
Periscope
Censorship-Resistant Off-Chain Traffic Tunnelling

Emiel de Smidt

Periscope: Censorship-Resistant Off-Chain Traffic Tunnelling

Master’s Thesis in Cyber Security

Emiel de Smidt

Supervised by: Stefanie Roos

Distributed Systems Group

Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology, Delft, The Netherlands

Author

Emiel de Smidt

Title

Periscope: Censorship-Resistant Off-Chain Traffic Tunnelling

Supervisor

Dr. S. Roos

Graduation Date

30th of August 2021

Graduation Committee

Dr. S. Roos, Delft University of Technology

Prof.dr.ir. D.H.J. Epema, Delft University of Technology

Dr.ir. S.E. Verwer, Delft University of Technology

Cover Design

Kirsten van der Ham

ii

Abstract

There is an everlasting arms race between censoring bodies and those in its grip. When

the censor is employing increasingly sophisticated techniques to digitally monitor and restrict

those in its scope, equally sophisticated means to circumvent the digital repression come

forward. Those suffering under digital censorship are using nifty ways to escape the censor’s

grip. Digitally restrictive regimes occasionally still allow access to blockchain applications

such as cryptocurrencies, albeit in limited form. Blockchains often enjoy a global nature,

but traditional and well established cryptocurrencies such as Bitcoin often do not have high

performance. Second layer solutions, also known as off-chain solutions, offer a network of

payment channels where transactions can be completed in peer-to-peer fashion with little

interaction with the slow blockchain. In this thesis we investigate how Bitcoin’s off-chain

solution, the Lightning Network, can be employed to circumvent digital censorship.

We introduce Periscope, a protocol that allows for tunneling of internet traffic between two

hosts over a stream of micro-transactions embedded with data. Next, we thoroughly analyse

its security and the network’s suitability from a theoretical perspective. Following this, an

empirical evaluation study is done to get an understanding of the performance of the protocol

under various circumstances. We hope that Periscope serves as an additional mean to access

the free internet to those in need.

iii

Acknowledgement

The report in front of you marks the conclusion of my time as a student. It is the result of

nine months of effort during a pandemic that has disrupted the student life that I had grown

so fond of. Whilst this research has been conducted almost exclusively from the comfort of

my studio apartment, it has been far from a solo effort. First and foremost I’d like to express

my gratitude to my supervisor Stefanie. Every Friday afternoon, 15:00 sharp, we had great

discussions on Lightning and all that we found interesting. Stefanie’s advise and help has been

of great value to this thesis. Completing a thesis during a pandemic would’ve been so much

more challenging if it weren’t for my dear friends Jasmijn, Pravesh, Maikel, Rowdy, and Lex

who inspired me to study Computer Science in the first place. The unconditional support that

I have received from my family is the reason why studying has always been a joy to me, and

for that I am thankful.

Emiel de Smidt

Delft, August 2021

iv

CONTENTS

1 Introduction 1

1.1 Leveraging Cryptocurrencies . 1

1.2 Research Question . 2

1.3 Periscope . 2

1.4 Report Outline . 3

2 Background on Payment Channel Networks 4

2.1 The Blockchain . 4

2.1.1 Security, Privacy, and Censorship . 4

2.1.2 Scalability and Issues . 5

2.2 Off-chain Solutions . 5

2.2.1 Payment Channels . 6

2.2.2 Multi-Hop Payments . 8

2.3 Lighting Anonymity and Security . 9

2.4 Network Topology and Costs . 9

2.5 Custom Records . 10

2.6 Invoiceless Transactions . 11

3 Background on Censorship 12

3.1 Impact and Relevance . 12

3.2 Censorship Scope and Capabilities . 12

3.3 Methods of Enforcing Censorship . 14

3.3.1 IP Filtering . 14

3.3.2 DNS Filtering . 14

3.3.3 Deep Packet Inspection . 14

4 Related Work 15

4.1 Traditional Censorship Circumvention . 15

4.2 Layer One Alternatives . 16

4.3 Data carrying Off-Chain Transactions . 17

4.4 High Volume Traffic . 18

4.5 Contribution . 19

5 Requirements and Scene Model 20

5.1 Requirements Formalisation . 20

5.2 Adversary Model . 21

5.3 Lightning Traffic Model . 22

6 Periscope: Internet Censorship Circumventing Off-chain Channels 24

v

6.1 High-level overview . 24

6.2 Submarine Module . 25

6.3 Periscope Module . 25

6.4 Session Module . 26

6.4.1 Data Carriage and Messaging . 26

6.4.2 Session Management . 27

6.4.3 Connection Management . 27

6.4.4 Mitigation of Detectability . 31

7 Analysis on security and privacy 32

7.1 Security and Privacy . 32

7.1.1 Confidentiality of Embedded Data . 32

7.1.2 Integrity of Embedded Data . 35

7.1.3 Anonymity . 36

8 Implementation 38

8.1 System Setup . 38

8.1.1 Lightning Client . 39

8.1.2 Bitcoin Blockchain . 39

8.2 Design . 39

8.2.1 Session Module . 39

8.2.2 Socket Interaction . 40

8.2.3 Data Carriage . 40

8.2.4 High Volume Transactions . 41

8.3 Throttling . 41

9 Evaluation on performance 42

9.1 Evaluation Setup and Approach . 42

9.1.1 Evaluation of Throughput . 43

9.1.2 Evaluation of Latency . 43

9.2 Impact of Route Length . 44

9.2.1 Latency . 44

9.2.2 Throughput . 45

9.3 Impact of Increased Transaction Rate . 46

9.4 Client Comparison . 48

9.5 Detectability . 49

9.6 Test Network Validation Testing . 50

9.7 Comparison to Alternatives . 52

10 Discussion 54

10.1 Points of Critique . 54

10.2 A Larger Scheme . 56

11 Conclusion 57

vi

11.1 Future Work Recommendations . 58

12 Appendix 64

vii

LIST OF FIGURES

1 Alice and Bob open a channel by funding a multi-signature wallet on the blockchain. 6

2 Transaction between Alice and Bob, changing the previous state of the channel. . . 7

3 Broadcasting the final standing of the channel, to be payed out as normal Bitcoin

transactions. 7

4 Composition of onion packets and its hop payloads field. 10

5 Example of the censoring scope, where the censor has access to critical infrastructure

systems such as DNS servers and ISP gateways. 13

6 Interaction between different components of the Periscope protocol, blue region

marks the Periscope protocol components. 25

7 The different encryption layers encapsulating the transmitted network data. 26

8 Message formats used by the session module. 28

9 Interaction between different modules during connection setup. 29

10 Tunnelling of a packet with respect to order and connections. 30

11 Illustration highlighting the differences between throttling techniques. 31

12 Composition of onion packets and its hop payloads field. 34

13 System Setup, blue region marks parts of the periscope protocol, which is situated

atop of a stack of lnd and Bitcoind. 38

14 Session interface and the role-specific implementations. 40

15 Latency graphs for various rates at different route lengths, logarithmic scale. . . . 47

16 Network graphs highlighting the differences between throttling techniques. 51

17 Docker testbed setup to have consistent load during different tests. 67

viii

LIST OF TABLES

1 Comparison of average latency for increasing route length with n intermediate nodes

(1 TPS). 44

2 Comparison of throughput for increasing route length with n intermediate nodes. . 45

3 Approximation of critical transaction rates for various route lengths with n inter-

mediate nodes. 48

4 Comparison of throughput and latency for different clients. 48

5 Costs and time comparison between different throttling techniques. 50

6 Node distribution over the continents. 55

ix

1 INTRODUCTION

In settings where government repression and censorship form a large obstacle to the sharing of in-

formation, means of free communications can be limited. Over the last decade, online freedom and

rights have slowly deteriorated worldwide [56]. Especially during the global COVID-19 pandemic,

where a large share of activities have transformed to digital alternatives, digital surveillance and

restrictions have become more prominent [56]. Digital censorship has prompted a large amount

of tools and techniques that attempt to tunnel or obfuscate internet traffic to circumvent restric-

tions. Ideally, a solution is resilient against censors, whilst offering ease of use and a high degree

of anonymity. However, current solutions often fail to meet all criteria and those suffering under

censorship do not always have many options at their disposal.

1.1 Leveraging Cryptocurrencies

An accessible technology that digitally restricted regions nevertheless often share with the lesser

repressed regions are cryptocurrencies such as Bitcoin and Ethereum, albeit in limited form [57].

Whilst cryptocurrencies primarily aim to fulfil financial needs, their underlying technology allows

for applications with different purposes.

Compared to on-chain transactions, off-chain transactions offer significant benefits at little com-

promise [8]. For example, the Bitcoin network suffers from a very low transaction throughput,

averaging around at most seven transactions per second over the entire network. The related off-

chain solution, the Lightning Network, offers instant (micro)transactions, without reoccurring fees

imposed by the network. These features can form the basis of a communication channel, where

text and files could potentially be shared between peers. If data can be exchanged in the form

of transactions, it is desirable to make it indistinguishable to normal transaction patterns and

flows. As information shared on off-chain channels does not need to be broadcasted over the main

network, as well as a lack of central entities overseeing the communications [8], such channels seem

promising candidates for censorship circumvention.

1

1.2 Research Question

This research aims to study the potential that off-chain channels such as the Lightning Network

have to circumvent digital censorship, and by doing so providing those suffering under digital

censorship with another path to digital freedom. To address this, the following research question

has been drafted:

”How can off-chain Blockchain protocols be leveraged to circumvent digital

censorship?”

To arrive at an answer to this question the following research objectives have been set:

1. Study the impact of digital censorship and how it is enforced from a technical point of view.

2. Study off-chain solutions and select a solution that has potential to carry data and circumvent

censorship.

3. Define a set of goals that should be met for an effective censorship-resistant solution that

works on off-chain solutions.

4. Design and implement a protocol that meets the set goals.

5. Analyse the protocol from a theoretical perspective to show to what extend the protocol

offers security.

6. Empirically study the implemented protocol to evaluate its performance and suitability to

tunnel internet traffic.

1.3 Periscope

We introduce Periscope, a protocol atop Lightning that can tunnel network traffic between two

hosts over a stream of microtransactions. We define two nodes, a Periscope node P as well as a

Submarine node S. Here, S is the node that wants to tunnel its traffic and use P to proxy the

traffic to less restricted regions of the internet. The nodes do not require a direct channel between

each other, but instead can use the existing topology of the network to escape the scope of a

censoring body. On both ends of the tunnel, internet traffic and service messages are split up in

small parts that allow to be embedded in transactions as a custom record. This is possible as the

Lightning standard now allows to attach small arbitrary data to transactions that could normally

for example be used for the sake of bookkeeping.

From a high level, the tunnelling is realised in the following manner; node S runs the client protocol

on the host and configures it as a proxy. At launch, a session request is embedded in a transaction

2

and sent to a desired Periscope node P and a handshake is performed. Once completed, the client

on node S listens for new connections, and informs P of a new connection to be set up to the desired

host H. Once P has established a connection to H, traffic is tunnelled over microtransactions from

S to H and vice versa with P acting as a proxy. On node S no further interaction is required

except from configuring the Submarine clients as a proxy in a browser, and selecting a Periscope

node. The Periscope protocol offers a mechanism that allows for tuning the resulting Lightning

traffic to a suitable model in order to obfuscate its presence to an overseeing adversary. An existing

project, WhatSat, leverages this feature to build a chat client [6]. Whereas Whatsat serves as a

proof of concept of attaching data for communication purposes, Periscope goes beyond that and

demonstrates how an off-chain solution such as Bitcoin’s Lightning Network can effectively be used

to tunnel internet traffic in a censorship-resistant way.

1.4 Report Outline

The work in this report is structured in the following manner. We start by presenting the reader

with the background information on Payment Channel Networks in section 2. Here, the mechanisms

of the Lightning Network are discussed, and several aspects that make it a suitable candidate for

censorship resistance are explained. After this, a brief overview of censorship and its methods are

discussed in section 3. In section 4 related work is discussed that leverage blockchain technologies

to evade censorship, or use the Lightning Network to carry data as well. We define a set of

requirements and goals for a protocol that leverages off-chain solutions to tunnel internet traffic

in section 5.1. We then continue to introduce Periscope and its workings in section 6. After

this introduction, an analysis from a theoretical approach is done on the security and privacy

claims of Periscope in section 7. Following this, an empirical study is done where the protocol is

benchmarked under different conditions to analyse its usability in section 9. Here we also evaluate

Periscope’s ability to adjust its traffic to a custom model. The report concludes with points of

discussion in section 10 and a concluding section with recommendations for future work in section

11.

3

2 BACKGROUND ON PAYMENT CHANNEL NET-

WORKS

This section provides the reader with the required background information for understanding the

work presented in this thesis related to Payment Channel Networks. We start with providing a

brief overview of the blockchain as used by Bitcoin and continue with its secondary network, the

Lightning Network, that aims to tackle Bitcoin’s scalability issues.

2.1 The Blockchain

Since the publication of the original Bitcoin white paper by the mysterious author Nakamoto in 2008

[49], the topic of blockchains has sparked great interest in both the academic as well as economic

communities. The blockchain as introduced by Nakamoto offers security guarantees to a public

and decentralised ledger where there is no central authority at play. However, since its inception

it has long surpassed its goal and its scale has imposed a significant penalty on the usability of the

system. In essence, the Bitcoin blockchain is a community-curated ledger of transactions, where

one’s current balance can be inferred by tallying all the incoming and outgoing transactions. The

Bitcoin network is supported by miners. Miners are nodes who gather transactions and compose

blocks of transactions, which are to be appended to a chain of blocks; the Blockchain.

2.1.1 Security, Privacy, and Censorship

The blockchain is maintained by miners all around the world, and the validity of the network

relies on whether or not the majority of the miners are honest. The consensus algorithm used by

Bitcoin, Proof of Work, makes it infeasible for malicious mining nodes to incorporate fraudulent

transactions in the blockchain as long as the majority of the computational power is in hands of

honest nodes [49].

In traditional banking, a certain level of privacy is achieved due to the transactions not being

disclosed to the entire public. However in Bitcoin, the flow of transactions of the entire network is

stored in the blockchain and can be considered public knowledge. The privacy that Bitcoin has to

offer directly comes from the absence of the final link; the link between the public address and the

owner of the address. However, several threats pose a risk to this marginal level of privacy [30].

Multiple nations have taken measures against Bitcoin and other cryptocurrencies. For example,

China has banned crypto-exchanges from operating, but that did not make the possession ille-

4

gal [57, 23]. Regulatory actions against cryptocurrencies are often backed up with claims that

cryptocurrencies pose a large financial risks, that the mining imposes stress on the electrical in-

frastructure, or that it can be used to fund terrorists and other illegal activities [41]. Besides local

regulation, there is little that a censor can do to disrupt the blockchain, assuming that no censor

will have the means to acquire enough computing power to outperform all the honest nodes com-

bined or distress the network in other ways. However, a censor could directly monitor the network

and detect and consequently block Bitcoin-related traffic within their scope.

2.1.2 Scalability and Issues

The underlying consensus algorithm of Bitcoin, Proof of Work, does not scale well. Due to the set

amount of transactions that can be encapsulated in a block, as well as the dynamically managed

limit of one block being mined roughly every ten minutes, there is a throughput of roughly seven

transactions per second worldwide. Furthermore, a transaction is considered validated by the

network only after five consequent blocks, resulting in significant latency. No matter how much

the network grows, the current consensus algorithm will not allow for a higher throughput or faster

confirmation times. Furthermore, to incentive mining nodes to include a transaction in the to-be-

mined block, a fee should be included when making a transaction. Hence, the network can become

congested and costly quite quickly. If two nodes, Alice and Bob, were to frequently buy something

from each other with Bitcoin as the currency, a lot of additional costs and inconveniences are to

be taken into account.

It is evident that Bitcoin is very limited in terms of throughput, and the high fees makes it less

than ideal for using it as a means to transfer funds on a regular basis. In order to achieve a more

usable payment network, a layer-two (also known as off-chain) protocol has been proposed called

Lightning [53].

2.2 Off-chain Solutions

One of the most well-established off-chain solutions is the Lighting Network [53], Bitcoin’s payment

channel network that aims to provide faster and cheaper payments.

Bitcoin its underlying consensus algorithm, Proof of Work, makes it inherently unsuitable for an

efficient payment network of large scale. The Lightning Network allows participants to exchange

currency without constant involvement of a potentially slow blockchain, and instead only interact

with the blockchain when opening or closing a payment channel or to settle a dispute.

Two parties that wish to make frequent transactions to each other can construct a direct payment

channel, and eliminate the direct involvement of other parties and the Blockchain. This in turn

greatly decreases the latency and reduces the transaction costs. The Lightning Network is a

5

mesh network composed of individual payment channels between parties. The set of all payments

channels forms the payment channel network, where nodes can send funds to other nodes with

whom they do not share a direct payment channel by propagating a transaction over a route of

payment channels.

The Lightning Network is composed of multiple Lightning clients. Most prominent are lnd1 by

Lightning labs, eclair2 by ACINQ and c-lightning3 by Blockstream. In an attempt at standard-

isation, the BOLT specification, Basis of Lightning Technology, has been drafted [2]. Here, a

description of protocols and a set of guidelines is provided, such that different clients can interact

with each other and form an operational network. Differences between clients can be found primar-

ily in parts such as the path finding algorithms [40]. The work presented in this paper focuses on

the lnd implementation as it is closely follows the BOLT specification, and is the most prominent

implementation [47].

2.2.1 Payment Channels

A payment channel is a connection between two nodes that allows for direct payments between

the parties. Two users of the Lightning network can set up a channel by creating a multi-signature

commitment transaction that locks funds on the blockchain. These funds can only be released

when both signatures are present, i.e. both parties in a channel agree on doing so. This locking

of funds establishes a channel. We denote the capacity as the amount of funds deposited on a

channel.

Figure 1: Alice and Bob open a channel by funding a multi-signature wallet on the blockchain.

Both parties of a channel have a balance, indicating the amount of funds that a node could send to

the other party. In the Lightning Network the funds are often expressed in Satoshis, the smallest

possible division of a Bitcoin (one hundred millionth of a single Bitcoin). A transaction between

1https://lighting.engineering/
2https://acinq.co/
3https://blockstream.com/lightning

6

the two parties of a channel occurs when they cooperatively agree upon a new state of the mutli-

signature wallet its output transactions. If a transaction is made, the payee’s balance increases

while simultaneously the payer’s balance decreases. During its lifetime, this capacity remains the

same, whereas the balance shifts over time as the participant make mutual transactions. Once

both parties agree, a channel can be discontinued. Now, the final balance is broadcasted to the

blockchain which results in the parties obtaining their respective balance.

Figure 2: Transaction between Alice and Bob, changing the previous state of the channel.

Figure 3: Broadcasting the final standing of the channel, to be payed out as normal Bitcoin

transactions.

The Lightning network employs security mechanisms that allows for strict repercussion for fraud-

ulent actions. In the event that a participant of the channel broadcasts an old state that was more

favourable, its peer can present a more recent channel state which they have both agreed to with

digital signature. Penalties are enforced by the network, which results in the misbehaving peer

loosing all of the funds [53].

7

2.2.2 Multi-Hop Payments

If a payer and payee do not share a payment channel then a transaction can still be realised without

creating a dedicated direct channel. Instead, existing channels between intermediate nodes can be

utilised to securely forward a transaction. A transaction between the receiving node R and sending

node S involves the following phases:

1. R creates and shares an invoice with S that specifies payment details.

2. S calculates a route along suitable intermediate nodes to reach R.

3. Intermediate nodes along the chosen route commit to forwarding the transaction.

4. R reveals a secret value r to its predecessor along the route, claiming the committed funds.

5. The transaction is propagated along the individual connections, from the payee towards the

payer.

In a transaction with multiple intermediate nodes involved, the payee node will generate a 32-byte

value known as the preimage, r. This preimage r is hashed which yields a payment hash, h(r).

This hash value is used to form a conditional payment, where the funds are paid if the original

preimage is known. This payment hash, and the amount to be payed are given to the payer S by

the payee R as an invoice.

In absence of a direct payment channel, S determines a route towards R over the payment channel

network, taking aspects such as costs and reliability into consideration.

After a route has been selected in the previous step, the nodes along the route commit to forwarding

the transaction. This commitment heavily relies on the use of Hash time-locked contracts (HTLC).

HTLCs restrict the spending of funds until either a specified time has passed, or the preimage of

the hash is presented. The sending node constructs a message based on the Sphinx protocol [31],

with an extension of per-hop payloads. This packet is constructed in a way that a receiving node

can only read the information needed to verify the package, as well as determine the node to

forward the package to [10].

What follows is a chain of conditional payments along the route, starting from the payer and

ending at the payee. In a nutshell, each node along the route sends its adjacent nodes on the

route a transaction that allows for fulfilling the HTLC. The payee node knows the preimage it

constructed, and therefore has the ability to claim the funds from their predecessor. By completing

this payment the predecessor is granted knowledge of the preimage, and can claim the funds from

their respective predecessor along the route in similar fashion. This process continues down the

route until the origin payer node is reached.

8

2.3 Lighting Anonymity and Security

Payment channel networks such as Lightning are built with privacy and security in mind. For a

censorship circumvention system, it is desirable if not critical for it to offer anonymity to the user.

Clients on the Lightning Network employ an onion-style routing scheme [10]. Once an intermediate

node receives such an onion-message, it can only determine its predecessor as well as successor.

Based on the transaction it cannot draw conclusions on who the source or the final destination

of the transactions is. This offers a significant privacy benefit that helps in making a censorship

resistant communication channel as presented in this work.

The anonymity has been studied in many contexts. It has been shown how certain design choices

allow for reasoning and in turn diminished anonymity [37, 44, 45, 58, 40]. For example, the path

finding algorithms used by different Lightning clients all aim to be as short and efficient as possible,

with little fees imposed by intermediate nodes. Knowing this, a de-anonymization attack can be

deployed [40]. The anonymity and privacy offered by the Lightning network has proven to be not

as guaranteed as hoped. The work presented in this thesis takes the findings of these reports into

consideration, as anonymity is a desirable if not essential property of a censorship-circumventing

solution.

2.4 Network Topology and Costs

The Lightning network is a peer-to-peer network that has no centralised critical infrastructure

vulnerable to attacks or repercussions that could take down operation of the entire network. The

Lightning Network enjoys a large topology, with over 22 thousand nodes and nearly 56 thousand

channels at the time of writing4. All those nodes and channels could aid the repressed host

with finding a suitable route to escape the censor’s grip. However, research has shown that the

Lightning Network is arguably not a truly distributed network, as a small subset of the nodes hold

the majority of stake in the network [42]. This does pose a risk, as a failing or attacked major

node could have impact on the network [47]. However, the option often remains to find a route

that circumvents major centralised nodes, but this can come at the cost of higher routing fees due

to longer routes.

As payments are routed through the network, fees by intermediate nodes are to be payed. An

important aspect of the protocol presented in this work is that it is financially accessible, that

is, the amount you pay for using the protocol should be limited to reasonable amounts. The

Lightning Network allows for making transaction as small as one Satoshi, but intermediate nodes

often request a base fee of at least one Satoshi for their forwarding services. Hence, in order to

make a successful microtransaction to a node situated elsewhere in the network, one needs to spend

4https://1ml.com/

9

a relatively large share of funds on fees.

The cost of using the Lightning Network are directly related to the current value of the network’s

underlying protocol; Bitcoin. However, the Bitcoin market fluctuation has little influence on the

topological efficiency of the Lightning Network, except for the capacity stored in channels [25].

2.5 Custom Records

The onion-encrypted message send by paying node has hop-specific payloads containing payment

and routing details that only the intended recipient can read. Furthermore, the space allocated

for these hop-specific payloads is flexible [11]. Due to this flexibility custom records in the Type-

Length-Value (TLV) can be included in the hop-specific payload, allowing the paying node to send

information along with the transaction. Applications can leverage this for various purposes such

as bookkeeping. This also opens up the door for experimental features as well such as utilising

Lightning transactions for purposes other than financial.

Figure 4: Composition of onion packets and its hop payloads field.

However, the longer the route between the two counterpart nodes of the protocol becomes, the

less data can be embedded. In figure 4 we see that the hop payloads field is composed of multiple

variable-length hop-specific payloads with their accompanying fields. As more intermediate hops

take part in the route, less room will be available for additional data as the hop payloads field has

a predefined length of 1300 bytes. Without additional data, an intermediate hop payload field has

a size of l bytes (note, this is not properly specified in the Bolt standards but has been determined

to be around 30 bytes), in addition to the single-byte Length and the 32 bytes HMAC field. Given

that hop payloads field is a fixed size of 1300 bytes, the following formula can be deduced to find

out how much data can theoretically be carried depending on the amount of intermediate nodes n:

Lmax data = 1300− n(1 + l + 32)− (3 + 32)

Hence, as the required route length grows, more transactions are required to transmit the same

amount of data. This results in a higher cost, as more transactions are to be completed along

routes where more intermediate nodes ask a fee. However, an increase in hops will make it more

challenging for an adversary to trace the transaction. The protocol therefore faces a trade-off

between the costs and traceability as well as performance.

10

2.6 Invoiceless Transactions

The possibility of including custom records as explained in section 2.5 allows for transactions

that do not require a prior invoice. Whereas in normal multi-hop transactions the payee creates

the preimage and payment hash, an invoiceless transaction requires the payer to construct them.

When the payee node receives the onion packet, it can extract the preimage and reveal it to its

adjacent node within the chain of commit transactions, setting the shift of funds along the channel

in motion. This is aptly named the KeySend approach. This allows for spontaneous payments to

peers that accept it [15].

11

3 BACKGROUND ON CENSORSHIP

We present an overview concerning the scope as well as means of internet censorship that users

of the Periscope protocol might face. Censoring bodies aim to limit or disrupt the access to or

exchange of data. This is achieved by either directly manipulating the information to be censored,

or by targeting the means of access to the data. Means to circumvent digital censorship will be

discussed in chapter 4 on related work.

3.1 Impact and Relevance

Censoring happens all around the world, for different reasons, and to different extents. Both

repressive regimes aiming to control their civilians as well as democratic countries limiting access

to content that is deemed harmful censor their inhabitants. The motivation behind censoring often

varies. Whereas some censoring regimes restrict access to illegal marketplaces, other might hinder

access to sources that contain politically sensitive topics. It can be argued that censoring can be

done with good intentions and for good purposes, for example access to content that directly cause

harm to individuals or the society. However, such arguments can be misused. For example, this

rhetoric is used by various governments to block access to Wikipedia in its entirety [4], where the

public is consequently restricted from a large source of information.

3.2 Censorship Scope and Capabilities

Before we define the methods that can be used by a censor, it is important to know what the

capabilities and facilities of a censor are. A censoring entity can come in many forms, ranging

from parents monitoring their children to restrictive regimes monitoring their civilians. For this

work we assume that a state censor has access to the entire digital infrastructure of its region,

but no direct endpoint monitoring of the devices used by individuals. A state censor can force

full cooperation of an internet service provider, allowing for inspection, rerouting, and blocking of

traffic. Such forced cooperation is not unusual and can happen to various extends [18]. It should

also not be underestimate what measures authorities are willing to take. For example, Russian

legislation allows authorities to isolate the nation from the World Wide Web, similar to what Iran

has already done in the past [56].

We define the censoring scope as the digital region of which the censor can be considered to

have total control and observatory capabilities. Figure 5 illustrates an example of a censoring

scope. Hosts dependent on these systems are within the censoring scope. The protocol presented

12

in this report aims to offer these restricted hosts means to interact with the internet without the

interference of the censor. An important assumption that is being made is that the censoring scope

is not an hermetically closed system, and in fact a subset of the World Wide Web. This assumption

implies that the censored host wishing to circumvent censorship has means to communicate with

hosts outside of the censoring scope, albeit under heavy monitoring or indirectly.

A censorship-circumvention solution would be of little use if it can only operate as long as the

adversary is not even aware of its existence. When designing such a solution it is important that

the censoring bodies are aware of the potential presence and workings of it. Hence for this report

we closely follow Kerckhoffs’ principle [52], the protocol’s effectiveness should not fall apart once

the censor knows how it operates.

To conclude, this work assumes that the censoring body has the resources and intention to monitor

hosts on an individual level and can both observe and block traffic if it decides to do so. The

censoring body however does not fully isolate all hosts from communicating with hosts beyond the

censoring scope, nor does it have the advantage of breaking cryptographic protocols used by the

censorship circumvention systems.

Figure 5: Example of the censoring scope, where the censor has access to critical infrastructure

systems such as DNS servers and ISP gateways.

13

3.3 Methods of Enforcing Censorship

The following subsections briefly cover common censorship techniques. The techniques concern

those that rely on filtering, and not on content moderation such as restricting discussions on certain

topics on digital platforms. The censorship approaches discussed in this section are relevant as the

protocol presented in this report aims to circumvent them.

3.3.1 IP Filtering

A common and relatively straightforward way for a censor to block access to online resources is

by maintaining a blacklist of IP addresses. If a censor observes a connection to a blacklisted host,

the connection can be interrupted and terminated by sending TCP RST packets, instructing the

source host to cease the connection. Significantly more restrictive, but also less common is the

usage of a whitelist, where only connections to approved hosts can be made.

3.3.2 DNS Filtering

In order to block interaction with a disallowed host before the interaction is initiated, the DNS

requests can be obstructed. Commonly, before a connection is established to a host, its IP address

is requested through a DNS request sent to a DNS server. If a censor has control over the DNS

server, requests to disallowed domains and hosts can simply be discarded. A censor can restrict

access to public DNS servers, and redirect it to their own. DNS filtering creates a strong initial

obstruction for users wishing to communicate with a restricted host. Due to the relative ease as

well as effectiveness, this approach is quite common and applied by various nations [51].

3.3.3 Deep Packet Inspection

A more sophisticated approach to filter internet traffic is by means of Deep Packet Inspection (DPI),

which directly analyses the monitored traffic to draw conclusions on its legitimacy. If a censoring

body deems the usage of a service illegal, traffic can be evaluated to arrive at characteristics that

can in turn be used to identify usage and take countermeasures. For example, the Great Firewall

of China inspects traffic and can identify Tor usage based on the ciphersuite presented by the Tor

client’s ClientHello message [60].

14

4 RELATED WORK

This chapter provides an overview of work that is related to the work presented in this report. As

employing off-chain protocols such as Lightning to carry data is quite novel, published research on

using off-chain solutions to communicate is limited. Hence, related work is discussed that touches

upon partial goals of this research, or aims to achieve a similar goal in a different way, e.g. by

using the blockchain directly.

Firstly we compare the work to more traditional censorship resistant systems, and see that the

main distinction between traditional and off-chain systems can be made in terms of being prone to

being blocked by the censor. This is followed by an analysis of work that leverages properties of the

blockchain such as its global accessibility to provide censorship resistant communication channels,

namely Moneymorph [46] and Tithonus [54].

Following this, work related to the partial goals of the project is covered. We find that Lightning

is not immune to attacks nor that it offers complete privacy to the users of it. The techniques

that current applications and projects that utilise Lighting for the purpose of transporting data,

in this instance chat messages, are compared. Particularly relevant for this thesis are the works

related to detectability as well as high volume traffic, as these have posed to be key challenges in

designing our protocol. The findings from these studies provide value to the project, as it gives us

an understanding of the challenges faced when making a true privacy-preserving and censorship-

resistant system.

4.1 Traditional Censorship Circumvention

Whereas blockchain technologies can still be considered quite novel, the practice of circumventing

censorship has brought forward many different approaches [39]. This section will lay out a brief

comparison between the traditional approaches and the work presented in this report.

A common way to acquire access to web content that is restricted by a censor is by using a VPN,

but a censoring body can impose penalties or block critical infrastructure of the VPN provider [19].

Public VPN systems [16, 50], where individuals can host proxy nodes, have come forward. However

the traffic of a VPN, either centralised or decentralised, can still be susceptible to fingerprinting,

giving room for a censor to block content.

A frequently used system for anonymous web browsing that is also used to circumvent censorship

is Tor [32]. With Tor, traffic of the user is routed through multiple proxies and relays, which

results in anonymization. The relay nodes that a client can use are publicly available, which allows

15

a censor to blacklist connections to known Tor-related hosts [20]. In response to this, the Tor

Project deploys unlisted entry relay nodes known as bridges that propagate traffic to the rest of

the Tor Network. However, censors can actively probe the network to discover Tor nodes, where

after a host has been deemed Tor-related, it can be added to the blacklist. Tor can be considered

to be in a constant game of cat-and-mouse where the censor blocks critical infrastructure [9]. The

work presented in this report relies on the assumption that blocking the Bitcoin network, and

in turn the accompanying off-chain solution Lightning, is unlikely to happen due to the related

collateral damage [54, 46, 3].

Other ways to hide disallowed traffic and in turn circumvent censorship are obfuscation, mimicry,

and appropriation [28]. Obfuscation is the act of making protocol characteristics hard to identify,

for example through randomisation or adding redundancy. The assumption is made that a censor

is not willing to block traffic of which a censor cannot draw conclusions on the nature. Mimicry

takes a different approach and explicitly tries to make traffic indistinguishable from services that

are popular and allowed, to avoid being blocked as the collateral damage would be too high. For

example, SkypeMorph mimics Skype traffic covertly transports data by mimicking Skype calls [48].

Such an approach does however require significant maintenance to maintain indistinguishability

as the impersonated service advances. There is also Protozoa that covertly tunnels traffic over

web streaming services at the respectable rate of 1.4 Mb/s [24]. Whilst Protozoa claims to be

highly resistant to traffic analysis it does require participation of proxy hosts. A censor can block

traffic directed towards such proxy hosts using a straightforward blacklisting technique. The work

presented in this report will also require participation of proxy hosts, but as they are reached in

a peer to peer manner blacklisting will not be successful if the proxy node is situated outside the

censor’s scope. An increasingly prominent approach to censorship circumvention is decoy routing,

also known as refraction networking [59]. This is a promising line of work that has shown true

benefit. However, a critical aspect of such a system is the cooperation of an ISP, which by doing

so face the risk of retaliation. Due to the decentralisation of the Lightning Network, the unlikely

cooperation of an ISP or other central entity is not required.

The work presented in this paper does not aim to replace the aforementioned systems, but offer

an alternative instead. Whereas other approaches could offer higher bandwidth while being easier

to use and more cost efficient, the accessibility can not always be guaranteed.

4.2 Layer One Alternatives

Utilising the blockchain to communicate freely or carry data has been covered in literature. Most

notably, Minaei et al. [46] have shown how the persistent and global nature of the blockchain from

various cryptocurrencies allow for bootstrapping of secure communication channels to circumvent

censorship, as presented with the project MoneyMorph. MoneyMorph is a stegonagraphy boot-

strapping scheme that embeds information such as the public key of a censorship circumventing

16

proxy in publicly available transactions, which can in turn be used to set up a connection. A com-

parison between different cryptocurrencies is drawn, and it is concluded that the Bitcoin network

is less suitable compared to others such as Zcash due to the high fees as well as latency. The recip-

ient is expected to wait for two hours before it can observe the data on the blockchain. Another

major downside of this scheme in combination with Bitcoin is that coins are irreversibly lost, also

known as burnt. This is a common pitfall of schemes aiming to store data on the blockchain [21].

Furthermore, a frequent topic of critique when it comes to storing data on a public blockchain

such as Bitcoin is that it unnecessarily increases the size of the blockchain that participants have

to download [21]. Minaei et al. discuss that the introduction of off-chain payment channels allows

for new means to communicate freely, which is the focal point of this work. By moving towards

off-chain payment channels, the fees have become less restricting as well as virtually no latency

for a transaction to arrive at the recipient. Furthermore, all the funds spent by the users to com-

municate will remain within the network as it is used to pay for fees during routing. Aside from

transactions related to opening channels that a user of the system could potentially use specifically

for this scheme, no exchanged data is permanently stored on the blockchain.

Furthermore, in the work presented by Recabarren and Cubanar [54] the scheme Tithonus is

proposed that uses Bitcoin gossiping protocols to exchange arbitrary data. Whereas they do not

utilise the second layer networks, it also aims to send data as effectively as possible in a censorship

resistant way. Tithonus however still has a noteworthy latency, making it more suitable as a back-

up option when other solutions such as VPNs are blocked according to the authors. Furthermore,

the economic costs of using Tithonus is around 9 Satoshis per byte, which is significantly more

expensive than the costs of using our system.

Whereas MoneyMorph [46] focuses solely on the bootstrapping of a communication channel under

the assumption of heavy censorship, Tithonus is designed to handle the communication itself. The

work presented in this paper shares the goal of achieving censorship aforementioned projects, but

shifts its protocol to the second layer payment channels to lessen the financial burden and be less

reliant on a potentially slow and congested blockchain. Later in this report the performance will

be compared. The work presented in this report serves as a good comparison how utilising the

layer two protocol, Lightning, allows for greater throughput compared to layer one solutions.

4.3 Data carrying Off-Chain Transactions

The BOLT standard has only recently specified the inclusion of arbitrary data to a transaction

[5, 11]. The standardisation of this allows for efficient data transmission across the Lightning

network, independent of which Lightning client is encountered along the route. At the time of

writing there are a few projects that utilise Lightning transactions for the primary purpose to send

data to a recipient. The notable projects focus on chat messages, and can be considered either

a proof of concept or a serious attempt at creating an application that will be used. As using

17

Lightning for purposes other than financial reasons is relatively new and uncommon, there is yet

to form a substantial research body.

Whatsat [6] is a Lightning application that serves as an initial proof of concept for attaching

arbitrary data to transactions. Here, two users can chat with each other, where messages are

attached as custom records to transactions. This project demonstrates how small text-based

messages can be send. In the work presented in this thesis however, key challenges such as high

volume, as well the decomposition and ordering of data are taken into consideration, which are not

accounted for nor implemented in Whatsat. The way data is included in a transaction is similar

to how it is done in this work. As the intention of Whatsat is to serve as a proof of concept, no

scientific work is related to it.

Juggernaut [7], similar to Whatsat, is a messaging platform utilising Lightning transactions, that

incorporates wallet functionality. The project states to be censorship-resistant, however literature

backing up this claim is lacking. As the project is publicly available on GitHub, we can see that

the way data is attached to transactions seems to be in line with this project as well as Whatsat

which is expected to be indeed censorship resistant. However, for the Juggernaut project the focus

lies on short chat messages rather than high volume internet traffic as the work presented in this

report aims to handle.

There are more projects already utilise the Lightning network to send information along with a

transaction[22]. However the frequent use case is to encompass information related to a purchase

with the transaction. For this work we leverage transactions to carry data, rather than making a

payment. The main difference between these projects and the one presented in this thesis is the

use case. Whereas Whatsat and Juggernaut focus on sending chat messages, either as a proof of

concept or as an attempt at creating a complete messaging platform, this project aims to provide

a censorship circumventing protocol to gain access to restricted online resources. To achieve this,

different hurdles have to be overcome, such as reliable high volume traffic that respects the ordering

of data.

4.4 High Volume Traffic

One of the initial features that the Lightning project aims to offer is to allow microtransactions

[53]. This opens up the door for applications that use a large amount of low-value transactions.

Example use cases are pay as you use applications, where you continuously send funds that allow

for access to a service, e.g. sending a small amount of funding on a short interval to a recipient

that in turn grants access to watching a live concert.

Several studies have been dedicated to analysing the efficiency of the Lightning Network, as well

as attempting to achieve the highest throughput of transactions. In these studies, the main point

of focus is the routing protocol. A recent experiment by Joost Jager, a developer of the Lightning

18

client LND, attempted to get a feel to what extent the Lightning Network is suitable for high fre-

quency transactions [36]. The conclusion was that the network is not yet capable of delivering high

frequency transactions beyond a throughput of roughly thirty transactions per second. Whilst the

network might not be capable of delivering a throughput in the order of hundreds per second yet,

several areas of improvement have already been identified and the throughput is only expected to

increase over time as development continues and not become congested [35]. An improved through-

put over the network is beneficial to our protocol, as this would allows for a higher throughput in

terms of exchanged data as well.

An important aspect to take into consideration when sending a large amount of transactions in

unbalanced quantities between two nodes is the risk of depleting a channel, where all of the funds

have shifted towards one side. This is well covered in the literature. While this thesis does not aim

to solve the rebalancing problems that lightning faces, it does keep it strongly into consideration.

4.5 Contribution

To conclude, Periscope contributes to demonstrating how a second layer protocol such as Lightning

can offer means to access information sources such as the World Wide Web without restrictions

imposed by a censor. Where in the original proposition of the Lightning Network [53] as well

as in public discussion the potential use cases of micro-transactions are often fantasised about,

there are yet to emerge substantial functioning applications. Current studies focus on several

relevant aspects of this work, such as security and user anonymity, but leveraging the Lightning

Network as a data carrier is limited outside of non-scientific projects. Periscope also demonstrates

how to overcome technical hurdles that come with managing data-embedded transactions that are

sent at high rates. We thoroughly evaluate the claims made by the BOLT specification [2] and

evaluate to what extent Lightning clients and the network are equipped to handle large volumes

of transactions. Periscope has the potential to form a world wide community that can aid those

suffering under digital censorship in getting access to the free internet.

19

5 REQUIREMENTS AND SCENE MODEL

Now that an understanding of the required background and related work has been established we

formalise the requirements that a protocol should adhere to. Furthermore, we present an adversary

model and make assumptions about its capabilities that have been taken into account for both the

design in chapter 6 and the analysis in chapter 7.

5.1 Requirements Formalisation

There are many aspects that a censorship circumventing solution has to take into consideration.

Certain levels of security and privacy have to be met, whilst aspects such as high performance might

be less relevant. We define a set of requirements as well as goals that a censorship-circumvention

protocol that uses the Lightning Network should strive for.

Requirement 1. Transactions carrying data should be indistinguishable from normal transactions.

In order for data-carrying transaction to be routed over the Lightning Network it is important

that intermediate nodes will not treat the protocol’s transactions different to normal transactions.

Furthermore, indistinguishability of the transactions prevents an adversarious node or overseeing

entity from detecting and consequently intervening with the protocol’s operation.

Requirement 2. Transmitted data should have its integrity uphold.

If an adversary can temper with the transmitted data then there are ways to enforce censorship.

It is therefore crucial that this cannot take place.

Goal 1. Censored users can use the protocol without risking a censor’s repercussion.

Usage of the protocol should be anonymous and pose little risk of being identified by a censor.

However, as the Lightning Network is not free of anonymity shortcomings it is unrealistic to achieve

a complete anonymous system if we rely on the Lightning Network. We thus should also focus

on the detectability of the protocol, minimising the risk of an adversary identifying users of the

protocol.

Goal 2. The protocol should provide users with a reliable tunnel that supports normal browsing

activities.

Reliable communication between the protocol’s endpoints is essential for usability. If the protocol

does not allow for continuous streams of data than normal browsing activities can not be realised.

20

Furthermore it is desirable if not essential that the throughput and latency of the protocol allows

web content to be loaded in a reasonable time frame. However, as the protocol’s main goal is to

be censorship resistant, security is deemed more important then performance.

Goal 3. The protocol should be as cost-efficient as possible.

The protocol will utilise transactions to carry data between two peers, which requires the sending

node to pay fees to any intermediate nodes as well as funds to the destination. Whilst the Lightning

Network allows for transactions of very low value, a large stream of transactions might become

costly. It is therefore a goal to minimise the amount of transactions required for transmission of

data.

5.2 Adversary Model

For the analysis we define an adversary that can take on two distinct positions in its attempts to

undermine the protocol, namely in a position to oversee network traffic of nodes participating in

the route, or as an intermediate node. The following assumptions are made about the capabilities

of the adversary:

Assumption 1. The adversary can oversee network traffic towards or from nodes located within

its scope.

Censoring bodies are often government agencies who can pressurise internet service providers into

providing them with monitoring capabilities. In the analysis of the protocol we grant the adversary

with the same capabilities. The adversary can observe all traffic towards or from a node within its

scope, but once a node outside the scope has been reached the adversary looses all its capabilities.

However, all traffic between hops along a route is encrypted on the transport level, as defined in

BOLT 8 [12]. Under the assumption that the lightning clients implement the peer to peer encryp-

tion correctly, an overseeing adversary can not read the transmitted onion packets.

Assumption 2. The adversary can take on the role of a strategically positioned node in Lightning

node in the network, but will not fulfil the role of a Periscope node.

We assume that Lightning nodes under the control of the censor are present within the network,

and could be part of the route chosen by the Lightning client to communicate between the Subma-

rine and Periscope nodes. The involvement with the network is an attempt to detect or intervene

with the usage of the Periscope protocol.

Assumption 3. The adversary is aware of the workings and the potential usage of the protocol

within its scope.

21

The protocol is designed with Kerckhoffs’ principle [52] in mind; the adversary should have full

understanding of the workings of the protocol yet no capabilities to undermine its security. The

assumption is made that the protocol is facing an adversary that is aware that users under its

surveillance could make use of the protocol to escape its grip.

Assumption 4. The adversary is computationally bounded, and has no endpoint monitoring ca-

pabilities.

Where the adversary does become limited in terms of its capabilities is that it has no direct

control over the hosts situated within its scope. We assume that for an adversary the hosts are

essentially black box models, where it is aware of what goes in and out, but not what happens

inside. This implies that the secure keys belonging to the Lightning client of choice are shielded

from the adversary. Furthermore, the adversary is not capable of breaking cryptographic techniques

deemed secure by the community.

5.3 Lightning Traffic Model

It is also important to define a model for normal Lightning Network traffic in order to reason

about aspects such as detectability of the protocol. Arriving at a good representative model is

challenging as the transactions on the network are not broadcasted publicly and there are large

differences between nodes. We can nevertheless reason about what could pass as normal Lightning

Network traffic based on known use cases and statistics of the network.

A frequently used analogy for explaining the benefit of the Lightning Network is a regular customer

visiting a coffee company that accepts cryptocurrency for payments. Here the customer and the

company share a payment channel to avoid the long delays and fees that would come with paying

with Bitcoin over the blockchain. Such a node would be responsible for creating at most a few

transactions per day.

If a node initiates large bursts of transactions at irregular intervals it would not be in line with

what one would consider common Lightning traffic. An overseeing adversary could observe this

and conclude that the Lightning Network is leveraged for activities unrelated to payments and

consequently intervene.

A use case proposed in the original Lightning paper by Poon and Dryja [53] is the commodification

of services. With micropayments, customers can pay-per-use for services. For example, a streaming

service where users pay for the service with a constant stream of low-value transaction as long as

they are watching content. However, such services are yet to emerge and gain traction.

We define the model used in this work based on the use case of pay-per-use services. If the

tunnelling can take place over a stream of micro-transactions at a stable rate of roughly ten

22

transactions per second we consider it unlikely to draw an adversaries attention. This stream can

have a small amount of fluctuation that could be attributed to the Submarine node participating

in the network as an intermediate node. This model will be used by the throttle mechanism as

explained in section 6.4.4 to mimic normal traffic. As the network is still rapidly evolving, a more

suitable model might be needed over time.

23

6 PERISCOPE: INTERNET CENSORSHIP CIRCUM-

VENTING OFF-CHAIN CHANNELS

We introduce Periscope, a protocol atop Lightning that can tunnel internet traffic between two

hosts over a stream of micro-transactions. The protocol devises itself in two counterparts that

combined allow for tunneling of internet traffic. We define two nodes, a Periscope node P as well

as a Submarine node S that use the Periscope protocol. Here, S is the node that wants to tunnel

its traffic and use P to proxy the traffic. The nodes do not require a direct payment channel

between each other, but instead can use the existing topology of the network to escape the scope

of a censoring body if desired. On both ends of the tunnel, internet traffic and service messages are

split up in small parts that allow to be embedded in transactions as a custom record. Adversaries

such as censoring bodies and malicious nodes along the route cannot draw conclusions on the

observed transactions, making the protocol suitable for censorship evasion.

In this chapter we start by providing a high-level overview of the workings of the protocol, followed

by an in-depth explanation of the different components and their functionality.

6.1 High-level overview

The general outline of how internet traffic is tunneled between the Periscope node P and the

Submarine node S over the Lightning network is as follows:

1. Node S runs the client protocol on the host, and configures it as a proxy.

2. A session request is sent towards P and a handshake is performed.

3. The Submarine protocol awaits incoming connections on it’s proxy module.

4. Upon reception of an incoming connection, P is informed and requested to make a connection

to the requested host.

5. Incoming traffic on both ends can now be tunneled towards their counterparts.

6. Step three to five are repeated for new incoming connections.

The protocol is comprised of three disjoint components, namely the Periscope, Submarine, and the

Session module. Where the Periscope and Submarine modules are responsible for interaction with

sockets, the Session module is used as an interface to the Lightning Network and is responsible for

managing connections and data-carrying transaction. In figure 6 the interaction between different

24

components is illustrated from a high level. Here, node P and node S are connected through n

intermediate nodes that are not directly involved with the protocol.

Figure 6: Interaction between different components of the Periscope protocol, blue region marks

the Periscope protocol components.

6.2 Submarine Module

A Submarine node, node S, utilises the Submarine module to tunnel it’s traffic to the Periscope

node P using the Session module. The Submarine component operates on top of the Session

module and is responsible for listening to incoming connections, and sending tunnelled traffic to

the appropriate socket. During execution, a proxy server is launched that the end user can configure

either in the browser or directly on the host itself. With this proxy in place, the Submarine module

is informed of any new connections as it receives an HTTP CONNECT message5 that contains the

information required to set up a new connection. With this information a tunnel can be set up in

cooperation with the Session module and the Periscope node.

6.3 Periscope Module

A Periscope node utilises the Periscope module to proxy traffic to the appropriate external host

and communicate back incoming traffic to the Submarine node using the Session module. Once

it is informed by the Session module that a new connection is to be established, a connection is

made with the requested external host and from here the traffic can be tunnelled as desired.

5https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/CONNECT

25

6.4 Session Module

Whereas the parts of the protocol residing in the Periscope and Submarine parts mostly concern

the management of connections towards the internet or the browser, the session module provides

an interface that allows for tunneling the traffic to their counterpart. The session module is

responsible for setting up a session between the Periscope and Submarine node, managing of

several simultaneous connections over a single stream, and embedding the data and messages

required to achieve this into lightning transactions. In the following sections, the aforementioned

responsibilities will be individually discussed.

6.4.1 Data Carriage and Messaging

The Lightning standard allows to attach small arbitrary data to transactions that could normally

be used for the matters such as bookkeeping as described in section 2.5. Unlike normal Lightning

transactions, Periscope focuses on the attached data rather than the transferred value.

The protocol employs two different message types; Service Messages and Data Messages. Service

messages are those that deal with aspects of the protocol such as session setup, connection an-

nouncements and connection closings. Data messages on the other hand have the sole purpose of

transmitting data belonging to connections.

The embedded network data is encapsulated by multiple layers of encryption, as seen in figure 7.

For this work, the protocol opts to exclusively deal with HTTPS traffic as this offers end-to-end

encryption. This prevents the Periscope node from having full insight into the transmitted data.

Following the HTTPS layer of TLS encryption the data is onion encrypted in line with the BOLT

4 standards [10]. The data is to be embedded as a custom record for the final node’s hop-specific

payload, which only the recipient has access to. Lastly, following the BOLT 8 standard [12] the

traffic between channel endpoints along the route is encrypted on the transport level.

Figure 7: The different encryption layers encapsulating the transmitted network data.

The traditional mechanism of completing transactions with the Lightning Network requires the

26

payee to create an invoice that is shared and consequently paid by the payer node. This implies

that the initiative of a transaction is exclusively for the payee. This mechanism does not lend

itself to spontaneous payments, and realising efficient communication channels as a consequence is

expected to be troublesome. For example if the periscope node P wants to transmit a packet to

the submarine node S, S would have to create and share an invoice beforehand over a potentially

insecure channel. To circumvent this significant overhead, the experimental Keysend approach is

taken, as described in section 2.6. By including the payment hash its pre-image as a custom record

in similar fashion to the service and data messages, the submarine can take the initiative to contact

the periscope node and send data-embedded transactions without prior arrangement.

6.4.2 Session Management

For the purpose of this research, the establishing of a session has been designed to be a straight-

forward handshake. The Submarine node presents itself to the Periscope node with its public key.

Upon receipt of this request, the Periscope node informs the Submarine node of its decision with

either a GRANT or REJECT message. From here, tunneling of traffic can be initiated as described

in the following sections.

During a session it is possible that over time an imbalance of funds will occur. This is the case as

during a normal web browsing session more content is downloaded than uploaded. The Periscope

node will likely send a larger volume of transactions to the Submarine node than other way around.

This poses a risk to the channel balances along the route between the two counterparts, as it

could result in channel depletion where the balance has shifted towards the Submarine side. A

consequence of such a depletion is that no further transactions to the Submarine node can be

made. To overcome the risk of such depletion we propose a scheme where the Submarine regularly

makes a large transaction to the Periscope node, who in turn can use the received funds for the

stream of data-embedded microtransactions. Channel depletion is well-covered in literature [38]

and considered beyond the scope of this work. Furthermore, it is up to the Periscope and Submarine

nodes to agree upon aspects such as financial compensation for the services.

6.4.3 Connection Management

Setup of a connection: A new connection can be established in the following manner. Once

the Submarine module has been informed of a new connection request, the information required

to set up a connection on the Periscope node is presented to the Submarine’s session module. This

includes the external destination, as well as the port number on which the CONNECT message

was received. With this information the session module constructs a virtual Tube object TSP that

has the previously mentioned port number as identifier. Tube objects are used on both ends of

the tunnel to have separate message queues for individual connections, for them to be queried by

the accompanying socket once the tunnelling has initiated. Following the construction of TSP a

service message is sent to the Periscope node that contains the same information. Upon receiving

27

this service message the Periscope’s session module constructs a Tube object as well, TPP . The

Periscope’s session module now informs the Periscope module about the newly requested connec-

tion. Next, the Periscope module establishes a connection to the requested external destination

over a newly created socket. Once the connection has been established, the Periscope’s session

module informs the Submarine that tunneling can be initiated by sending a transaction containing

HTTP/1.1 200 Connection established. All outgoing data messages are prepended with a tube

index (see figure 8), and upon arrival the index is read and the data is directed to the right Tube’s

message queue. If the socket on the Submarine that initiated the connection is in a readable

state, TSP is queried and the HTTP/1.1 200 Connection established message is directed to the

socket. Once this process has been completed, the tunneling of the connection can proceed. Figure

9 illustrates the aforementioned steps. During a normal browsing session it is common to have

multiple simultaneous connections, by using the Tube objects the protocol allows them to tunnel

traffic in parallel and still arrive at the appropriate sockets on both ends.

Figure 8: Message formats used by the session module.

28

Figure 9: Interaction between different modules during connection setup.

Ordering: A stream of consecutive transactions over lightning are not guaranteed to arrive at the

destination in a ”first in, first out” order. Piping incoming packets to the socket without regard

of their original order can result in a corrupted stream and errors in the connection. To overcome

this, packet indexes are utilised to keep track of ordering. The Tube object belonging to the specific

connection is tasked with both keeping track of a sending index as well as a receiving index. When

a socket receives data, the session module consults the appropriate Tube object for the next index,

and prepends this to the message to be sent. Upon receiving of a message-embedded transaction,

the session layer extracts both the Tube index as well as the message index. The packet is now

directed to the appropriate Tube’s message queue, where the position on the queue is based on

the parsed index. Now, when a socket is in a writable state, the session module presents the

appropriate packet if available. Packets that arrive before their preceding packets will not get

piped to the socket, and remain in the Tube’s buffer until eligible. This process is illustrated in

figure 10, where the message formatting can be seen in figure 8.

29

Figure 10: Tunnelling of a packet with respect to order and connections.

Error checking: It is trivial to conclude whether or not the recipient has received a message-

embedded transaction. If the (multi-hop) payment would not succeed, error messages will inform

us and no funds are deducted from the local balance. This proves to be of great use, as this

reduces the significant overhead of constructing an entire stack responsible for checking of faulty

transmissions. The Lightning client, and not the protocol, is responsible for making a successful

transaction. If a transaction fails another attempt can be made, where the Lightning client is

responsible for successfully concluding the transaction. In the unfortunate situation that this can’t

be realised, the operation cannot proceed as no reliable routes can be found.

30

6.4.4 Mitigation of Detectability

Whilst the individual transactions aim to be indistinguishable from regular transactions, the net-

work patterns that emerge during usage of the protocol might give an adversary indications that

the Lightning Network is used for purposes other than transferring funds. In section 5.3 we have

proposed a model of Lightning traffic that the protocol attempts to follow in order to minimise

the risk of being detected. The session module is equipped with a configurable throttle mechanism

that can be used to adjust the protocol’s network traffic to be in line with a predefined model, this

aims to achieve goal 1 and make usage less likely to be detected. The throttle takes two variables

into consideration:

• Interval: The interval at which transactions are send can be limited to a set specification.

During normal network activities packets can be exchanged in bursts, by limiting outgoing

transactions to a set rate we can dampen such bursts.

• Filler transactions: An option to send filler transactions in absence of data-carrying trans-

actions.

In figure 11 the differences have been illustrated. All three diagrams represent the rate of trans-

actions being sent once a website is visited using the Periscope protocol. In the first graph we

observe a high spike in transactions that is not in line with normal use cases or the previously

defined model from section 5.3. The second graph employs throttling, where the rate at which

transactions can be sent is limited to a predefined value. This effectively dampens the intensity of

the previously observable peaks. However, the occasional absence of transactions are still notable

patterns that can be observed, which are again not in line with normal use cases nor the model. In

order to obfuscate these patterns we can opt to send filler transactions. These transactions are sent

to keep the rate of transactions at a constant level, even in the absence of normal data-embedded

transactions.

Figure 11: Illustration highlighting the differences between throttling techniques.

The throttling mechanism does come with a trade-off between detectability, performance, and costs.

The throttled traffic will take longer whilst requiring the same amount of transactions, favouring

goal 1 (detectability) over goal 2 (reliability). If we employ throttling with filler transactions then

additional costs will be made and we now favour goal 1 over goal 3 (cost efficiency).

31

7 ANALYSIS ON SECURITY AND PRIVACY

In the previous section the general outline and workings of Periscope have been discussed. This

chapter aims to give a more detailed explanation from a theoretical perspective how the protocol

achieves the privacy and security guarantees that are desired for censorship-resistant systems such

as Periscope. The analysis relies on the specifications and requirements that Lightning clients

should adhere to, as defined by the BOLT standard [13]. We find that these standards offer strong

defences against traditional censorship approaches as well as a degree of privacy. However, the

Lightning Network and therefore the Periscope protocol faces diminished anonymity when taking

side-channel attacks into consideration.

7.1 Security and Privacy

In the following subsections several security properties are discussed, and how Periscope aims to

fulfil them. First we argue that data-carrying transactions created by the Periscope protocol are

indistinguishable from normal Lightning transactions. Following this, it is shown that the involved

parties can be ensured that the transmitted data has not been tampered with. It is also reasoned

how the protocol offers a degree of privacy to both counterparts of the protocol, but that full

privacy has not been achieved.

7.1.1 Confidentiality of Embedded Data

For a protocol to be considered secure in terms of confidentiality, only those allowed to read or

write the transmitted data are capable of doing so. Furthermore, a node along the route that

is not involved in the protocol or an ISP overseeing the connections should not be able to draw

conclusions on the content of transmitted data or the presence of such. The following analysis is

written from the perspective of an adversary that is part of the route chosen by Lightning, and

assumes that the adversary does not take attack vectors other than packet analysis such as traffic

patterns into consideration. We define the following definition and its accompanying security game:

Definition 1. A data-carrying transaction is confidential if an adversary cannot do better in the

confidentiality game than guess at random.

32

Security Game Confidentiality

Game Initialisation

R : [pks, ..., pkA, ..., pkr], β : {0, 1} ←Setup(λ)

Oracle query Ω(m1)

τ ← ER(mβ)

return τA ← D{0,...,(A−1)}(τ)

Game Finalisation(τA)

β′ ← A(τA, {m0,m1})
return β = β′

The security game is derived from the Indistinguishability against Chosen-Plaintext Attack (IND-

CPA) Game [29], where the adversary is allowed to make queries to the encryption oracle. During

the setup phase a route R between the sending node s and receiving node r, where the adversary

A takes part in, is constructed. Furthermore, β is selected from the set {0, 1} at random. The

adversary can now presents the encryption oracle Ω a plaintext message m1 that it wishes to be

embedded in a transaction as many times as it desires. The oracle now either embeds the empty

message m0 or m1 based on the selection of β in a transaction destined for the Periscope along route

R. The resulting transaction τ is now onion-decrypted to arrive at the state of the transaction

that the adversary would receive when forwarding the transaction: τA. Presented with τA, the

adversary has to determine whether τA contains the empty message m0 or its provided message

m1. The game is won if the embedded message can be identified by the adversary.

In order to reason about this, we first have to understand how and why Lightning allows for

embedding data to its transactions. Before sending a transaction along a route R, the sending

node s constructs an onion packet that contains the relevant information for each hop along the

route, as well as the final receiving node r. The construction of this onion packet happens in

iterative fashion. The sending node calculates a shared secret with each hop along the route using

Elliptic-curve Diffie-Hellman (ECDH) algorithm on the hop’s public key and an ephemeral private

key, of which the outcome is hashed using SHA256 to arrive at a shared secret ssk. With this

shared secret, a set of keys are generated (see appendix 12.3).

At the start of the packet construction, 1300 random bytes are generated with the ChaCha20

algorithm [26] as an initialisation packet. From here the onion packet can be iteratively constructed

in reverse order, starting with the final destination. For each iteration the sender computes a

HMAC H and Length Li to be accompanied with the hop payload HPLi. The 1300 packet

bytes are right shifted and the three fields are prepended, where the bytes exceeding the 1300

byte limit are discarded. Now, the sender generates a 1300 byte long pseudorandom stream using

ChaCha20 in combination with a key derived from the shared secret. The current state of the

onion packet is then obfuscated by performing an XOR operation with this stream. This set

33

of operations is repeated for every hop along the route. As a new ephemeral key is created for

each individual transaction, the resulting shared secret will also be different. This will result in a

different pseudorandom stream, and therefore no two transactions will be the same even though

they share the same payment details.

The variable length hop payload fields contains TLV (Type-Length-Value) onion payloads, which

is normally used for embedding payment details and routing information. However, the format

also allows for flexibility, where clients such as lnd [1] can choose to allow nodes to embed custom

records. In figure 12 the composition of an onion packet as defined by BOLT standard is illustrated.

For the periscope protocol, data is transmitted as a TLV onion payload and is found in the final

hop payload, HPLn−1.

Figure 12: Composition of onion packets and its hop payloads field.

When an intermediate node i receives the onion packet it can only extract the Length Li, the

hop payload HPLi and the associated HMAC Hi. This is the case as it can generate the same

pseudorandom stream that was used to obfuscate it during the initial construction to apply an

XOR operation and retrieve the original de-obfuscated stream. To each intermediate packet along

the route the transaction will look like a concatenation of the three extractable fields, followed by

obfuscated data that could either be filler data or further information for consecutive hops. After

having extracted the relevant details, the payload is left shifted and padded with filling so that the

packet remains 1300 bytes. We define the following theorem:

Theorem 1. Data-carrying transactions created by the periscope protocol are confidential as only

the intended recipient is aware of the presence of the data and able to extract it as described in the

confidentiality security game.

The following proof is given with the assumption that all the cryptographic libraries and techniques

have been implemented correctly by the Lightning client:

Proof. Upon receiving an onion packet, an intermediate node can only extract the intended infor-

mation as it can generate the same pseudorandom stream that was used to obfuscate it by the

sender using the shared secret ssk. An adversary node along the route could only conclude that

a transaction is carrying data if it can distinguish ChaCha20 from random. ChaCha20 is a vari-

ant of Salsa20 that follows the same design principles, but improves at diffusion between rounds

[26]. Salsa20 is secure and capable of producing ciphertexts indistinguishable from random [27].

From this follows that an adversary node cannot draw conclusion on the potential presence of a

34

payload that is not for them as it is impossible to distinguish the remaining packet content from

random. Furthermore, the pseudorandom streams used during obfuscation are never used twice,

making it impossible for an onion packet to be repeated. The adversary cannot do better in the

confidentiality game than guess at random.

We have shown how Periscope achieves requirement 1 as defined in section 5.1. This makes the

periscope protocol resistant against a censor blocking traffic based on the content.

7.1.2 Integrity of Embedded Data

A censorship circumvention solution would be of little use if it cannot guarantee that the data being

transmitted has its integrity uphold. An unauthorized node or an ISP having means to tamper

with the data directly implies that censorship can be enforced. In section 1 we have shown how

the onion packet construction ensures that transmitted data remains confidential. This section

however will ignore this property and work under the assumption that an adversary does know

which part of the onion packet contains the data transmitted by the protocol. By doing so we

are giving the adversary an advantage in its attempt to manipulate the data. We show that the

accompanying keyed-hash message authentication codes (HMAC) ensure that a recipient is aware

of any malicious actions on the data. With this knowledge, it follows that the protocol provides the

users with integrity even before the additional defence mechanisms of the onion packet obfuscation

as described in section 1 is applied. We define the following theorem:

Theorem 2. Data-carrying transactions created by the periscope protocol uphold integrity as any

attempt at tampering with the data by an adversary will be known to the recipient and invalidate

the transaction.

As seen in figure 12, the entire packet is accompanied by an HMAC that nodes can use to verify

the integrity, as well as the source [33]. During construction of the onion packet by the sender,

hop-specific payloads are constructed, as well as an HMAC representative of the state of the onion

packet to be forwarded by an intermediate node. The origin node can deterministically know the

state of the onion packet that intermediate nodes will forward, as no randomness is involved and

the filler data as well as the obfuscation stream are derived from a shared key that both the sender

and the intermediate node share. Upon receiving the onion packet, a node can verify the packets

integrity by computing the HMAC and comparing it against the received HMAC.

The following proof shows how Periscope achieves requirement 2 as defined in section 5.1. The

proof is given with the assumption that all the cryptographic libraries and techniques have been

implemented correctly by the Lightning client:

Proof. All onions packets are accompanied with an HMAC, where the key is derived based on the

ECDH shared secret between the sender and the receiver. When an intermediate node tampers

35

with the onion packet to be forwarded in ways other than described by the BOLT 4 standard [10],

the pre-computed HMAC will not match and the recipient will be aware of the malicious actions.

Under the assumptions that only sender and receiver have knowledge of the shared secret, the

receiver can verify that the integrity of the received data is uphold.

7.1.3 Anonymity

The anonymity that the protocol offers is a direct result of the workings of the used Lightning client.

This section will describe the anonymity of the protocol facing differently situated adversaries, a

node along the payment route and an overseeing entity such as a censorship-cooperative ISP.

Finally we discuss to what extent a Submarine needs to place trust in the honesty of a Periscope

node. We first analyse the anonymity with an intermediate node as adversary.

Messages that are sent are constructed using onion encryption, where the Sphinx package format

is used. As explained in section 7.1.1 the constructed message offers only the information that

intermediate nodes require to successfully complete the transaction, or communicate back errors

to the original sender. According to the Bolt 4 specification on the Onion Routing Protocol [10]

the onion packets are to be constructed in a way such that the following holds:

Claim: Intermediate nodes forwarding the message can verify the integrity of the packet and can

learn which node they should forward the packet to. They cannot learn which other nodes, besides

their predecessor or successor, are part of the packet’s route; nor can they learn the length of the

route or their position within it.

While it has been shown that based on the transaction itself this claim does indeed hold, the

anonymity diminishes when side channel attacks are taken into consideration. Based on the work-

ings of the routing selection algorithms that different Lightning clients employ, an adversary could

reason about the likely source and destination nodes if it is appropriately positioned in the network,

with increased certainty if it can collude with multiple involved nodes [40]. Hence, the privacy of

lightning transactions, and therefore the usage of the protocol, cannot be fully guaranteed.

We now consider the adversary to be an overseeing entity, such as an censorship-cooperative

Internet Service Provider. It would be beneficial for the privacy if the route includes well connected

nodes. The Lightning Network has unintentionally become relatively centralised due to emerged

central hubs that hold disproportionate amounts of funds [42]. This arguably undesired feature

could become beneficial for the operation of Periscope as it would make tracing of transactions

more challenging for the overseeing adversary. once a transaction arrives at a well-connected and

active node it is processed and obfuscated before it leaves the node again, as part of the onion

routing.

An additional measure that can also be taken to diminish the risk of a censor taking actions against

a suspected Submarine node the Periscope node also fulfilling the role of an active participant in

36

the Lightning Network for normal transactions as well. If the adversary has managed to determine

that a host within its scope is sending transactions to a known Periscope node, it has to consider

the possibility that this is for purposes other than the tunnelling of traffic.

Furthermore, if the protocol is used for censorship evasion it is to be expected that the Periscope

node is not situated in the same region as the Submarine node, which will result in the data-

embedded transaction stream leaving the censoring scope. If the last intermediate node is situated

outside this scope, then the censor cannot conclude with certainty that a transaction stream is

destined towards a potentially known Periscope node. However, an overseer could observe that a

node within its scope is responsible for generating the Lightning traffic based on the ratio between

incoming and outgoing lightning messages.

Now that we have discussed the privacy regarding an intermediate or overseeing adversary we

analyse the privacy in the scenario that the Periscope node is either malicious or honest-but-

curious and compromised. The possibility of a Periscope node logging the interaction with the

Submarine should be taken into consideration. As Lightning transactions are source routed, the

Periscope needs to know the Submarine’s public key in order to send data-embedded transaction

towards it. By design of the Lightning Network one could link a public key to an IP address.

With this information the Periscope could log which connections are requested by the Submarine

node, and by doing so become in the possession of compromising material on the Submarine node.

Hence, there is a degree of trust required by the Submarine node in the Periscope node.

Measures can be taken to counter the exposing of the Submarine’s public key to the Periscope node.

In the work of Teechan [43], a payment channel framework is presented that runs leverages Trusted

Execution Environments (TEEs) [55] on the host for improved security guarantees. Here, the TEE

provides assurance that the ran code and its data remain confidential and have its integrity uphold.

A similar route could be taken for Periscope nodes, where any operations with the Submarine’s

public key remain in such a secure enclave. With a securely created onion transaction the Periscope

node would not be able to link the internet traffic to the respective Submarine, and it only knows

which node to forward it to. While the implementation of this is considered beyond the scope of

this work, it is to be taken into consideration.

We have shown that using the Lightning Network as a carrier of data offers valuable privacy

measures against malicious entities, but that a truly privacy-preserving and anonymous protocol

has not been realised due to the required trust in the Periscope node as well as side-channel

attacks. These weaknesses in anonymity are a problem faced by the Lightning Network, and thus

consequently Periscope. The impact of this diminished anonymity is that an adversary could

identify Submarine nodes which in turn can face repercussions. Periscope allows users to tunnel

the traffic to a host situated outside of its scope. Once outside the scope, a censor can not enforce

the commonly used blacklisting methods based on IP addresses or DNS queries. By utilising the

Lightning Network, Periscope strives for goal 1 as defined in section 5.1, but it can not be achieved

without further measures.

37

8 IMPLEMENTATION

In the previous section the general outline and workings of Periscope have been proposed. This

chapter aims to give a more detailed explanation of how the protocol has been implemented for

it to be evaluated. The project has been developed fully in Python and can be found on GitHub

where installation instructions are provided6. Similar to the composition of the protocol, the im-

plementation is also composed of a separate Periscope and Submarine module that share several

helper modules. The project has been developed upon the Lightning client LND [14] as it closely

follows the BOLT specification and provides developers with extensive documentation. The follow-

ing sections will elaborate upon the technical implementation decisions as well as the technologies

upon which the protocol relies.

8.1 System Setup

The two actors of the Periscope protocol, the Periscope and Submarine node, communicate over

the Lightning Network. In order to interact with the Lightning Network a specific setup has to

be realised. The implementation uses the Lightning client LND, which in turn uses Bitcoind to

synchronise with the blockchain. In figure 13 the interaction of the Periscope protocol with the

Lightning client LND as well as the Bitcoin client Bitcoind is visualised. The following subsections

will elaborate on the motivation behind the specific clients used for the setup.

Figure 13: System Setup, blue region marks parts of the periscope protocol, which is situated atop

of a stack of lnd and Bitcoind.

6URL: https://github.com/emieldesmidt/Lightning-Periscope

38

8.1.1 Lightning Client

In order to interact with the Lightning Network we have to work with a Lightning client. There

are various implementations, of which most comply with the previously mention BOLT standards.

The most prominent clients are LND, C-Lightning and Eclair. For this work the LND client has

been deemed the most suitable as it is widely used and well documented. LND provides developers

with an API which allows for easy interaction with the Lightning Network.

8.1.2 Bitcoin Blockchain

Even though one of the key ideas of off-chain solutions such as the Lightning Network is to have as

little interaction with the slow blockchain as possible, some interaction with the blockchain remains

necessary for operations such as opening and closing channels or in case of a dispute. For this work

we have opted for hosting a Bitcoind7 node that interacts with Bitcoin’s test network. The decision

has been made to work with the testnet to mitigate the financial impact of repeatedly opening and

closing channels where fees and collateral are involved. Furthermore, it was considered unethical

to put unnecessary load on the real network.

8.2 Design

In the previous sections we have discussed the technology surrounding the protocol, this section

will cover the technical implementation of notable parts of the protocol implementation in Python.

8.2.1 Session Module

As already explained in chapter 6, both the Submarine as well as the Periscope module make use

of a Session module as an interface to the Lightning Network. As the respective Session modules

have a lot of functioning in common, we have defined a Session super class 8 where all the shared

methods have been implemented. Role-specific session modules have been created that implement

relevant functionality and inherit common methods from its super class. This inheritance has been

illustrated in figure 14.

7https://bitcoin.org/en/full-node
8https://docs.python.org/3/library/functions.html#super

39

Figure 14: Session interface and the role-specific implementations.

8.2.2 Socket Interaction

Both the Periscope as well as the Submarine node interact with sockets. The socket interaction

happens at the level of the Periscope and Submarine module, and not the Session module. Here,

a continuous loop is ran that iterates over the active sockets and checks if they are in a readable,

writable, or erroneous state.

8.2.3 Data Carriage

The code as found in appendix 12.2 illustrates how data is embedded as a custom record to a

transaction, which is send using the keysend approach. As explained in section 2.6, a keysend

transaction requires the embedding of the payment hash’s preimage. The preimage-payment hash

pair has been generated using Python’s secrets9 and hashlib10 libraries, as seen in listing 1.

Listing 1: Construction of a data-embedded transaction

def c r y p t p a i r g e n e r a t o r (s e l f) :

while True :

preimage = s e c r e t s . token bytes (32)

phash = hash l i b . sha256 (preimage) . d i g e s t ()

y i e l d preimage , phash

9https://docs.python.org/3/library/secrets.html
10https://docs.python.org/3/library/hashlib.html?highlight=hashlib#module-hashlib

40

8.2.4 High Volume Transactions

The implementation relies on multi-threading to achieve a high transaction rate. The construc-

tion of a package, but especially the routing computation and the sending of a transaction are

computationally expensive and time consuming. In order to have effective tunnelling one can not

wait seconds before sending the next roughly 800 bytes as that would result in close to unusable

performance.

8.3 Throttling

Periscope employs an adjustable throttling mechanism as previously explained in section 6.4.4. A

throttling mechanism has been implemented in the throttle helper object by using a combination

of Python’s threading library as well as a thread-friendly Queue object. Here, the user can specify

at what rate transaction should be made and whether or not blank transactions are to be made

when there is an absence of new transactions to be sent. This all aids in the obfuscation of traffic

patterns that could be indicative of usage of the protocol. In appendix 12.1 the implementation

as used for the evaluation can be found.

41

9 EVALUATION ON PERFORMANCE

This chapter provides an in-depth evaluation of the protocol under different circumstances. First

we investigate to what extent a longer route between the Submarine and the Periscope has on the

performance, taking both latency and throughput into consideration. We see that an increase in

route length quickly results in degraded performance. Following this we investigate if continuous

operation at various transaction rates has an impact on the reliability and performance. Lastly,

the throttling mechanism as described in section 6.4.4 is evaluated. Network analysis demonstrate

how the throttle can successfully obfuscate network patterns that normally could hint at usage of

the protocol.

In this evaluation we take two metrics into consideration when quantifying performance. In order

to reason about whether or not the protocol is suitable to fulfil its task of tunnelling internet

traffic at a reasonable speed we need an understanding of the throughput that it offers. Another

important aspect to take into consideration when investigating the performance is the latency

introduced by the protocol.

We consider routes that have at most three intermediate nodes, as we assume that a Periscope

node will take effort to be well-connected to central nodes in order to be within short topological

distance. Such a route length is furthermore suitable for the vast majority transactions on the

Lightning Network [25].

9.1 Evaluation Setup and Approach

For the evaluation we take two distinct setups into consideration; a local testbed as well as the

Lightning test network. Evaluating the protocol on the test network would be troublesome due

to the many factors that are involved, and it could interfere with the normal operation of the

network. The test network is composed of nodes running different hardware, this would make it

hard to find routes that are representative of the network as every route will perform different.

Furthermore, repeatedly opening and closing of channels is very time consuming. Using a local

testbed we have full control over the channels and all nodes have an equal amount of computational

resources available.

Hence, for this evaluation we first investigate the performance in a controlled Docker11 network,

and follow with a validation test on the live test network12. In studies on the Lightning Network,

custom testbeds are often created where the nodes only simulate relevant aspects to the study, such

11https://docs.docker.com/engine/install/ubuntu/
12https://1ml.com/testnet/

42

as for example routing. For this evaluation however, all functionality of the Lightning clients has

to be taken into account. We therefore resort to using Docker images that have been published by

the client developers. The testbed evaluation has been conduct on a laptop equipped with an Intel

i7-6700HQ processor with 16 GB RAM memory running Ubuntu Linux 20.04. Here, networks have

been simulated by connecting Docker nodes running Lightning clients using Polar13. After each

ran experiment the network is reset to it’s initial state to avoid tests influencing each other. All the

intermediate nodes are LND clients, unless stated otherwise. This has been done as approximately

91.3 percent of the network is estimated to be LND [47].

Some test scenarios on the docker testbed differ in terms of computational intensity for the host.

As the route between the Periscope and Submarine node grows the load on the host will increase,

simply as more containers are active. This would make it challenging to attribute performance

differences solely to the working of the protocol. This has been taken into consideration and a

testbed has been developed that aims to have a consistent load, allowing for a more fair comparison.

With this setup there will be an equal amount of nodes fulfilling the same task at all times. An

illustration of the setup for various route lengths can be found in the appendix section 12.5.

9.1.1 Evaluation of Throughput

To evaluate the throughput in a reliable manner a bash script has been written, which can be found

in appendix 12.4. The script loads three commonly blocked webpages of various size in repeated

fashion using Curl14, simulating real browsing activities. The webpages are https://en.wikipedia.org/wiki/Censorship,

https://www.bbc.com and https://github.com. Using Curl’s output details the download speed is

extracted. In order to correctly reason about the throughput, the webpages are loaded ten times

each with a pause of a few seconds between them. With the results the average throughput can be

determined. Even though the loaded websites are hosted externally, the connection between the

Periscope node and the web-server is not expected to be a limiting factor. This is the case as the

supported throughput over the Periscope-Submarine tunnel is several orders of magnitude lower

compared to that between the Periscope and the web-server (roughly a factor thousand). This will

not have a significant influence to the tests results. Furthermore this would be representative of

real Periscope usage.

9.1.2 Evaluation of Latency

In order to evaluate Periscope’s latency we have included timestamps as a payload to transactions

send between the Submarine and Periscope nodes. Upon extracting this timestamp from the

transaction it is compared to the current time. The difference between these timestamps make

up the latency between embedding and extracting payloads. This way the extra latency that

would be introduced by letting the periscope communicate with an external host is circumvented.

13URL: https://lightningpolar.com/
14https://curl.se/

43

Furthermore, the exchange of timestamp-embedded transactions is repeated over 2500 times in

order to arrive at a representative average, or to evaluate its growth over time.

It should be noted that during usage on the the real Lightning Network, the latency will be higher

due to physical distances. The experiments in this section will therefore only give insight into how

much the operations of the protocol or intermediate nodes attribute to the latency.

9.2 Impact of Route Length

We start with evaluating how the route length, that is the amount of intermediate nodes, impacts

the performance. To reason about the performance both the latency between the Submarine

and Periscope nodes as well as throughput are measured as described in section 9.1.1 and 9.1.2.

The tests are relevant as the protocol can be expected to be ran under different conditions. For

example, a censor might prohibit a Submarine node to interact with a large set of blacklisted

Lightning nodes. In such a situation a Submarine node will have to resort to indirect channels of

various lengths. It is expected that the latency increases as more intermediate nodes participate

in the tunnelling as they all have to forward and complete the transaction. In terms of throughput

a decrease is expected for every additional intermediate node as more overhead is introduced.

With the testbed setup we construct a route connecting the Periscope and Submarine nodes, and

iteratively increase the route by adding more intermediate nodes. We then proceed to measure the

performance metrics of throughput and latency.

9.2.1 Latency

We now investigate the impact of increased route length on the latency between the protocol

endpoints. As described in section 9.1.2, a stream of timestamp-embedded transactions is send at

the low rate of one per second. This rate ensures that nodes are not handling multiple transactions

at the same time, allowing to arrive at a representative average latency

n Latency (s) ∆n− 1 (s) σ

0 0.165 - 0.0055

1 0.299 0.134 0.0057

2 0.431 0.132 0.0087

3 0.564 0.133 0.0092

Table 1: Comparison of average latency for increasing route length with n intermediate nodes (1

TPS).

We also observe an increase in the latency once more intermediate nodes are introduced. It is as

44

expected that an increase in route length will result in an increase in latency, simply because more

Lightning nodes need to interact with the transaction. We see that an additional intermediate

node will introduce around 0.13 seconds of latency. Furthermore we see that as the route length

increase, the deviation does as well. As more nodes are introduced, the likelihood of having a node

introduce latency due to for example a computational disturbance increases as well.

9.2.2 Throughput

We now continue to evaluate the throughput in combination with the aforementioned commonly

blocked webpages. As explained in section 2.5, once more intermediate nodes participate in the

route there will be less available space for embedding data. Hence we divide the throughput

evaluation into two distinct experiments; one with at most 775 bytes (the most that a route with

three intermediate nodes can carry), and one where the maximum amount of data depending on

the route length. Through experimentation we have found that these are 775, 816, 850, and 891

bytes for 0,1,2, or 3 intermediate nodes. The resulting throughput as well as the average time to

load the webpage can be found in table 2:

n
Throughput (kB/s)

Max carriage

Throughput (kB/s)

775B carriage

Time (s)

Max carriage

Time (s)

775B carriage

0 43.96 38.64 6.87 7.89

1 27.94 25.80 10.95 11.91

2 20.69 19.05 14.68 16.05

3 15.42 15.42 19.70 19.70

Table 2: Comparison of throughput for increasing route length with n intermediate nodes.

We see that the introduction of additional intermediary nodes has a direct impact on the through-

put. A path with zero intermediate nodes implies that the Submarine and Periscope nodes share a

direct payment channel. As expected we see that such a route offers the best performance in terms

of throughput. The moment that the protocol’s participants do not share a direct payment channel

the throughput diminishes. This decrease in throughput however is not linear due to the fact that

as the route increases, the latency between the Submarine and Periscope node increases as well.

In equation 1 we see that throughput for a route with n intermediate nodes equals the download

size over time, where time equals the latency lps between the Periscope and the Submarine, the

latency lep between the external host and the periscope, as well as the time required for completing

all the transactions. Here, the size of the retrieved content, as well as the time to retrieve, embed,

send and extract the transmitted data can be considered constant as they are independent of the

route length. As the latency between the Periscope and Submarine increases, as seen in table 1, it

becomes more influential for the throughput. In section 9.3 we empirically determine the maximum

supported transaction rate and reason about a maximum supported throughput.

45

Throughput(p, s) =
size

time

=
size

lep + lps + size
(TPS×Carriage)

=
size

lep + Cperi

(1)

To conclude, an increase in route length is not desirable for the performance of the protocol. Both

in terms of throughput and latency there is a notable impact once more intermediate nodes are

included in the route. This degradation in performance can be attributed to the time it takes for

intermediate nodes to process transactions. Furthermore, the throughput of the protocol is heavily

dependent on the route being chosen by the lightning client. A single node can act as a bottleneck

for the entire process. As occasional variances in performance can occur for the intermediate nodes,

an increase in route length will increase the risk of having an ill-performing node in the route.

9.3 Impact of Increased Transaction Rate

In this section the protocol implementation will be evaluated under sustained loads of various

transaction rates. The experiments will give insight into how both the Lightning clients as well

as the protocol are capable of handling different transactions rates. A higher rate allows for an

improved throughput, and is therefore desirable. The latency will be measured as described in

section 9.1.2, where each run is repeated four times to arrive at a representative average. A

continuous stream of 2500 timestamp-embedded transactions is sent from the submarine to the

periscope node at various rates.

There are multiple factors that could be responsible for a change in latency when faced with a

higher transaction rate.

• The sending node: The transaction rate can be limited for the sending node, as it might

not be computationally capable of sending out the transactions at the desired rate. This can

result in a sending-side buffer, introducing extra latency.

• The route: Whereas the Submarine and Periscope node might be dedicated to operating

the protocol, intermediate nodes are unaware participants. They can be computationally

restricted or busy handling other payments.

• The receiving node: Once transactions come in faster than it is capable of processing, a

buffer will grow increasingly large as more transactions arrive. This will consequently increase

the latency between construction of the transaction and the extraction on the receiving side.

We start by analysing the increase in latency once the rate of transaction increases. In figure

15a we show the impact of increasing the transaction rate in absence of intermediary nodes. As

46

the transaction rate increases at intervals of ten, the latency increases steadily. The Periscope

node can send multiple transactions simultaneously by spawning a separate threads. As the rate

of transactions increases this becomes computationally more challenging and threads will get less

CPU time assigned. As a result the transactions will experience a longer delay.

Once more intermediate nodes are introduced we see that an increase in transaction rate will result

in congestion across the route. We see that with intermediate nodes the latency fails to converge at

a certain rate as the route can not process the transactions at the rate at which they are sent. As

a result the latency between encapsulation and extraction of the timestamps will continue to grow

over time as seen in figure 15 b,c, and d. As the route length increases, the minimal transaction rate

that causes the latency to continue growing is lower. This is the case as a longer route introduces

more channels where congestion can take place.

(a) Latency development n = 0 (b) Latency development n = 1

(c) Latency development n = 2 (d) Latency development n = 3

Figure 15: Latency graphs for various rates at different route lengths, logarithmic scale.

We now investigate at what rate such an effect can be observed. We now iteratively increase the

rate of transactions and investigate whether or not the transaction latency stagnates over time.

The resulting maximum supported transaction rates are listed in table 3, where the accompanying

theoretical bandwidth has been calculated by multiplying the maximum carriage by the determined

47

maximum TPS.

n Maximum TPS Bandwidth (kB/s)

0 60 53.46

1 42 35.7

2 32 26.11

3 23 17.94

Table 3: Approximation of critical transaction rates for various route lengths with n intermediate

nodes.

The results are in line with our expectations; the best performance can be found when the route

between the Submarine and Periscope node is as short as possible. The latency will be lower and

more consistent due to the less intermediate nodes handling the transactions, and the throughput

will be higher. The listed rates might not be representative of performance on the actual Lightning

Network due to variances in computational power of the hosts, as well as higher latencies. The

experiments do however give a general impression of what the resulting effects are of increasing

the transaction rate.

9.4 Client Comparison

We now proceed with an investigation if there is a notable difference in performance between

different clients participating as an intermediate node between the Submarine and Periscope nodes.

As the Lightning Network is composed of different clients it is very likely that different clients take

part in the route between the Submarine and Periscope nodes. Even though all clients adhere to

the BOLT standards, the differences in implementations could result in minor differences regarding

latency and throughput.

Whilst the Periscope protocol has been configured to run atop the LND Lightning client, we

can easily compare different clients acting as an intermediate node. Using the Docker setup we

connect a Submarine and a Periscope node with either a LND, C-Lightning or Eclair client as an

intermediate node. We evaluate the throughput as well as latency in similar fashion to previous

evaluations. The results can be found in table 4.

Client Throughput (kB/s) Latency (s)

LND 28.88 0.29

C-Lightning 36.74 0.22

Eclair 6.49 0.24

Table 4: Comparison of throughput and latency for different clients.

The results indeed show differences between the client implementations. Most notable is the

difference in throughput that Eclair offers compared to the others. Hence, having an Eclair node

48

participating in the route will drastically reduce the performance. However, only a small fraction,

roughly two percent, of the nodes participating on the Lightning Network are Eclair [47]. This

will make the unfortunate situation of having to tunnel through a Eclair node unlikely. In order

to determine why a code analysis is required, but that is beyond the scope of this work.

9.5 Detectability

In this section the traffic patterns will be evaluated, with a focus on the influence of the throttling

mechanism as described in section 6.4.4. Whilst the transactions themselves give no indication of

data being embedded, network patterns might still give away the impression of ongoing tunnelling.

As described in section 6.4.4, the throttling mechanism aims to mitigate the likelihood that a

censoring body can draw conclusions on the patterns of the traffic between two nodes.

For this evaluation we inspect the network traffic belonging to the Submarine node. In similar

fashion to previous experiments we load the three commonly blocked websites four consecutive

times each using a Bash script with Curl to simulate browsing activities. Using Wireshark15 a

network capture has been made, and frequency diagrams have been constructed.

The throttling mechanism adjusts the transaction rate to a predefined model. For this evaluation

we define a node sending ten transactions per second for a a pay-as-you use service to be the model.

We provide a comparison between three different situations:

• Unrestricted: No throttling applied, all transaction occur at the maximal rate that the

docker containers support.

• Restricted: Throttling applied, the frequency of transactions is limited to a rate of 10

transactions per second.

• Restricted with obfuscation: Throttling and filler transactions applied, the frequency of

transactions is limited to a rate of 10 transactions per second. In case no data is ready to be

sent, empty transactions are sent.

In figure 16 a comparison is presented that shows the impact of the throttling mechanism. Figure

16a clearly shows the composition of the simulated browsing behaviour; loading three different

websites four consecutive times, with a small break between the websites. Spikes in network traffic

coincide with the web requests being done. Such patterns could indicate usage of the protocol

to an observer. If we now proceed to apply restrictive throttling, the previously seen spikes are

dampened. In figure 16b it can be seen that the spikes are spread out over a longer period of

time. This implies that it will take longer to transfer the same amount of data. Even though

the spikes have been made less recognisable, certain indications of network tunnelling can still be

15https://www.wireshark.org/

49

seen such as the gaps between loading the webpages. If we now apply dummy transactions to fill

potential transaction-voids, we can see that the tunnelling is further obfuscated in figure 16c. In

addition to the lower performance, this extra step of obfuscation will also result in higher costs

as more transactions need to be sent. In table 5 the trade-off between the different techniques is

highlighted.

Technique Throughput (kB/s) Transactions Total duration (s)

No throttling 25.24 4846 255

Throttling 7.10 5061 655

Throttling with filler 6.93 13450 660

Table 5: Costs and time comparison between different throttling techniques.

To conclude, the throttling can successfully obfuscates patterns that could be indicative of usage of

the Periscope protocol. The resulting Lightning activity is more in line with what we have defined in

section 5.3 as expected legitimate Lightning traffic. However, the trade-off comes forward between

performance, costs, and detectability.

9.6 Test Network Validation Testing

Now that we have evaluated several aspects of the protocol and its implementation on a local

testbed we validate its working and performance on Lightning’s test network. Two hosts with

roughly the same computational power will be functioning as the Submarine and Periscope node,

and are either directly connected through a shared payment channel or have an intermediate node

between them. We expect an increase in latency as the nodes are not on the same network, but

also an increase in throughput. This is expected as the LND clients now enjoy more computational

power.

We validate the working of the protocol outside a local testbed by connecting the two hosts through

an intermediate well-connected node situated in Australia16 on Lightning’s test network. With the

same throughput benchmarking script as used throughout this section we arrive at an average

throughput of 14.92 kB/s and a latency of 1.89 seconds between embedding and extracting a

transaction’s payload. This has demonstrated that the periscope protocol is equipped to tunnel

traffic over the test Lightning Network, and therefore also likely the real network.

16https://1ml.com/testnet/node/038863cf8ab91046230f561cd5b386cbff8309fa02e3f0c3ed161a3aeb64a643b9

50

(a) No throttling

(b) Throttling

(c) Throttling with dummy transactions

Figure 16: Network graphs highlighting the differences between throttling techniques.

51

9.7 Comparison to Alternatives

Now that we have a reasonable impression of what performance Periscope is capable of deliver-

ing we can compare it against traditional censorship approaches, as well as those that leverage

cryptocurrencies. We assume that Periscope does not employ throttling, and that there is one

intermediate node involved. We have shown how one intermediate node results in a latency of

300 milliseconds in section 9.2.1, but as this is on a local testbed. For a more fair comparison we

assume that all connections along the route introduce an additional 50 milliseconds of latency, and

thus work with a latency of 400 milliseconds.

In terms of performance the Periscope protocol does not come close to that of modern and com-

mercial VPN solutions. On average, common VPN providers offer their users an average latency

of 200.72 milliseconds and can transfer data at a rate of 13.53 MB/s [34]. For periscope the per-

formance lies significantly lower with 400 ms of latency. In terms of throughput we demonstrated

that roughly 35 kB/s can be realised, making Periscope over 380 times less efficient. However,

commercial VPN solutions can have critical infrastructure be blocked by censoring authorities, or

face legal consequences [19]. Periscope is not susceptible to such threats due to the decentralised

nature of the Lightning Network.

A project that shares more similarities with Periscope is the Tor anonymity network. Both

Periscope and Tor use layered encryption to pass traffic along its network. The Tor project has a

dashboard where performance metrics are published17. Depending on which onion server one uses

for Tor, a throughput of roughly 1.25 MB/s can be realised when downloading a file . Whilst this

throughput is closer to Periscope than it is to a commercial VPN, it is still roughly 35 times as

fast as Periscope. The Tor project also publishes round-trip latencies; the time it takes to get an

HTTP response to a request. We divide this in half and compare it against the time between em-

bedding and extracting a packet for Periscope. A rough estimation using the provided data gives

us a latency of 175 milliseconds in one direction towards a public server. This is again significantly

better than Periscope’s 400 milliseconds.

If we now compare our throughput to that of protocols that imitate legitimate protocols we see

that performance becomes very similar. For example, the SkypeMorph protocol has a throughput

of 43 KB/s [48]. Protozoa covertly tunnels traffic over web streaming services, and manages to

do so at the relatively high throughput of 1.4 MB/s [24]. An advantage that Periscope has over

imitation protocols is that it does not need to keep up-to-date with the legitimate protocol being

impersonated. Furthermore, the peer-to-peer routing of Periscope allows for a higher degree of

anonymity.

In comparison with censorship-circumvention solutions that use the Blockchain we see a clear

improvement. While no exact throughput numbers are presented in Tithonus [54], the authors

17https://metrics.torproject.org/torperf.html

52

state that it does not aim to be a protocol for tunneling traffic as it does not have reasonable

latency. Tithonus’ gossip transactions relay times are in the order of tens of seconds, and no direct

endpoint-tunneling scheme is proposed. In terms of costs the benefit of using off-chain solutions

becomes even more clear: Tithonus requires a costly 1 Satoshi per transmitted byte [54] whereas

the Periscope protocol can embed roughly 800 bytes in a single Lightning transaction at the cost

of 1 Satoshi (assuming one intermediate node requests this as a fee). It would not make sense

to have a communication channel directly on the blockchain, as transaction times will take at

least multiple minutes. Instead, it can be used to publicly list information that can be used for

further censorship circumvention endeavours. MoneyMorph [46] proposes a scheme that embeds

bootstrapping information on various blockchains using public-key steganography. In a Bitcoin

transaction MoneyMorph can embed 20 bytes, which then has to be published to the blockchain.

MoneyMorph does not focus on how a bootstrapped communication channel will look like, hence

we can not make a comparison.

53

10 DISCUSSION

In this work we have presented Periscope, a protocol for tunnelling internet traffic over a stream

of microtransactions in an attempt to circumvent censorship. However, there are concerns and

aspects that could hinder its operation that are yet to be discussed. This section will provide an

overview of concerns and questions that have come forward during the research. Following this a

larger scheme will be briefly envisioned.

10.1 Points of Critique

Below an enumeration of concerns and arguments against the protocol can be found, followed by

some elaboration or nuance.

Critique 1. The cost of tunnelling traffic quickly becomes significant.

The cost of operating the protocol depends on the fluctuating price of the Bitcoin, as well as the

fees asked by intermediate nodes. For example, the Wikipedia page on Bitcoin is roughly 1 MB,

this would require roughly 1200 transactions worth one Satoshi, excluding fees. If we are tunneling

with one intermediate node requesting one Satoshi as a fee, the total cost of loading this webpage

will be at least 2400 Satoshis (roughly 0.94 euro). Depending on the importance of the article

and the severeness of the censorship one might be willing to pay this toll, but it shows how other

activities such as video streaming will be financially infeasible quite quickly. Unless a Submarine

and Periscope share a direct channel, or intermediate nodes are generous in terms of fees, usage

of the protocol will indeed be quite expensive. Furthermore, in order to reduce the risk of channel

depletion it is important to have outgoing channels that have a large capacity or repeated rebal-

ancing.

Critique 2. The Lightning Network is not capable of providing help to all in need of censorship

resistance.

Even though there are many nodes taking part in the network, it is not equally distributed around

different regions of the world. Most nodes are situated in western countries, which often experience

less censorship. The table below illustrates this unbalanced distribution18.

However, the network is growing and more nodes are spawned on a frequent basis, nevertheless the

current state could hinder the effectiveness of the protocol for those situated in sparsely connected

regions as geographical distance will introduce extra latency.

18Data taken from https://1ml.com/location?type=continent

54

Continent Node Count

North America 1,581

Europe 1,663

Asia 161

South America 23

Oceania 40

Africa 20

Table 6: Node distribution over the continents.

Critique 3. The Lightning technology has not fully matured yet, and the network as well as the

clients are not capable of delivering a pleasant browsing experienced.

In the evaluation we have seen that a throughput of 35 KB/s can be realised with one interme-

diate node. This throughput is relatively low, but suitable for modest browsing activities. This

performance strongly degrades when more intermediate nodes become involved. However, the aim

of the project is not to compete with modern VPN solutions but instead offer yet another mean

to circumvent censorship. Hence, the option to escape the censoring scope is deemed far more

important over having high performance. The impression is nevertheless given that the technology

is not at a state that fully supports Periscope’s use case. For example, all transactions have to be

written to disk. Whilst this does not pose a security risk, it becomes inconvenient during extensive

tunneling. Occasional transmission errors can result in a corrupted client state, which requires

troublesome recovery and a potential loss of funds. This is not unexpected: clients such as lnd are

still in a beta phase during the time of this study (v0.13.1-beta for lnd19). As the network and the

technology matures further, it will become better suited for Periscope.

Critique 4. Authorities could take repercussions against the entire Lightning Network or cryp-

tocurrencies due to the undesired imposed censorship circumvention.

For this report we have explicitly worked under the assumption that an adversary is aware of

potential usage of the protocol. In line with the related projects of Tithonus and MoneyMorph we

deem it unlikely that an authority would take the decision to ban cryptocurrencies as a whole due

to heavy financial implications.

Critique 5. The protocol could be used for malicious purposes.

Periscope, similar to many other censorship resistant solutions, faces the argument that it could

be used for malicious purposes. This is a debate with very valid arguments for both sides. Any

attempt at preventing evil-intentioned usage is a lost cause where we would ironically find ourselves

to be censoring users.

19https://github.com/lightningnetwork/lnd/releases

55

10.2 A Larger Scheme

We have shown how the Lightning Network can be leveraged to tunnel internet traffic between two

nodes. This could theoretically pave the way for a larger scheme where there is a broad community

of Periscope nodes offering their services to Submarine nodes wishing to tunnel their internet traffic

to other regions. As an incentivisation Periscope nodes could ask a fee for their services, which

can be easily realised through transactions. This community can use the Lightning Network as

its foundation to communicate, and serve as a truly distributed world wide VPN. Hosting such a

community would require various supporting applications, such as a place where Submarine nodes

can find Periscope nodes that offer tunneling services. Here, the services of the periscope nodes

can be rated by the community.

As the main purpose of this work was to investigate whether or not off-chain solutions would

support tunneling of internet traffic we leave further details of such a scheme to the imagination

of the reader.

56

11 CONCLUSION

The work presented in this report shows that off-chain solutions such as the Lightning Network are

promising candidates for traffic tunneling. We have demonstrated how the Periscope protocol can

effectively leverage the Lightning Network to tunnel internet traffic between two peers. Periscope

is a novel use case of Lightning applications, where challenges such as ordering and high-frequency

transactions have been overcome.

We have thoroughly evaluated whether or not the Lightning Network allows Periscope to achieve

secure and anonymous tunneling in section 7. Here we have shown that by design the Lightning

Network is robust against many censoring attempts, but that the anonymity challenges facing the

Lightning Network also have implications to Periscope. Whilst the set requirements in section 5.1

on indistinguishably as well as integrity have been met, the goal of guaranteed security against a

censor’s detection and repercussions has not been fully met.

In terms of performance it does not meet modern standards such as commercial VPN solutions

or that what the TOR browser can offer, but it has proven to be capable for light web browsing

activities. The protocol meets the goal of reliability best under specific conditions; as the topolog-

ical distance between the Submarine and Periscope node increases then the performance in terms

of throughput and latency decreases. Utilising transactions for carrying data has a direct cost

associated to it, and rebalancing of channels along the route might be needed over time. Cost-

wise Periscope is nevertheless significantly cheaper than protocols that write data directly on the

blockchain, while also being much faster.

Periscope allows those that are digitally-censored to escape the censor’s grip and enjoy the World

Wide Web without restrictions. Whilst there are many existing solutions that have the same goal

of helping digitally restricted people escape their censor’s grip, Periscope is to our knowing the

first to leverage off-chain solutions such as the Lightning Network. The protocol does not aim

to replace the countless censorship-circumvention solutions, but serve as yet another alternative.

A larger scheme has been theorised where a community of Periscope nodes offer their tunneling

services to those in need.

57

11.1 Future Work Recommendations

The work presented in this report serves as a good introduction to exploring the potential of off-

chain traffic tunneling. However, several aspects have not been investigated that could further

solidify the answer to the research question. Furthermore, interesting questions related to the

Lightning Network in general have come forward. Suggestions for further research have been listed

below:

Recommendation 1. Evaluate the performance on the real Lightning network over the test net-

work.

For both ethical as financial reasons the experiments have been performed on the test network.

It is to be seen to what extend the test network is representative of the true network in terms of

topology, willingness to open channels, as well as performance.

Recommendation 2. Investigate the potential of Atomic Multi-path payment channels.

Recently Atomic Multi-path (AMP) payments have been included in the BOLT standards [10].

Here, a transaction can be completed simultaneously in parts over multiple distinct routes. Whilst

this is beyond the scope of the research, it does look promising for an increased bandwidth but

will likely come at the costs of higher fees as more nodes become involved.

Recommendation 3. A financial study on the costs of streaming microtransactions.

As the value of transactions decreases, the greater the relative cost of network fees becomes. That

is, when one wishes to transmit one Satoshi from node A to D, A will have to pay a total of three

Satoshis (assuming a fee of one Satoshi per intermediate hop). The question comes forward to

what extend the Network is suitable for high-frequency streams of microtransactions.

Recommendation 4. Investigate the potential of alternative off-chain solutions.

For this research we have explicitly investigated the potential that the Lightning Network has to

tunnel traffic. However, several other major cryptocurrencies have their own off-chain counterpart.

Similar studies on alternatives such as Ethereum’s Raiden [17] could provide an interesting com-

parison.

Recommendation 5. Investigate if the throughput differences between the clients poses a risk to

Lightning’s privacy.

In section 4 we have discovered that there is a significant difference in throughput between the

different Lightning clients. This could be used as an attack vector in attacks on Lightning’s privacy.

58

REFERENCES

[1] Announcing lnd v0.9.0-beta! — Lightning Labs. URL: https://lightning.engineering/

posts/2020-01-21-lnd-v0.9/.

[2] BOLT standards. URL: https://github.com/lightningnetwork/lightning-rfc.

[3] Can China Contain Bitcoin? — MIT Technology Review. URL: https://www.

technologyreview.com/2017/12/11/146816/can-china-contain-bitcoin/.

[4] Censorship of Wikipedia - Wikipedia. URL: https://en.wikipedia.org/wiki/Censorship_

of_Wikipedia.

[5] invoices: expose custom tlv records from the payload by joostjager · Pull Request #3742 ·

lightningnetwork/lnd. URL: https://github.com/lightningnetwork/lnd/pull/3742.

[6] joostjager/whatsat: End-to-end encrypted, onion-routed, censorship-resistant, peer-to-peer

instant messaging over Lightning. URL: https://github.com/joostjager/whatsat.

[7] Juggernaut. URL: https://www.getjuggernaut.com/.

[8] Layer 2 — Lightning Network — MIT Digital Currency Initiative. URL: https://dci.mit.

edu/lightning-network.

[9] Learning more about the GFW’s active probing system — Tor Blog. URL: https://blog.

torproject.org/learning-more-about-gfws-active-probing-system.

[10] lightning-rfc/04-onion-routing.md at master · lightningnetwork/lightning-rfc. URL: https:

//github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md.

[11] lightning-rfc/04-onion-routing.md at master · lightningnetwork/lightning-rfc. URL: https:

//github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#

packet-structure.

[12] lightning-rfc/08-transport.md at master · lightningnetwork/lightning-rfc. URL:

https://github.com/lightningnetwork/lightning-rfc/blob/master/08-transport.

md#encrypting-and-sending-messages.

[13] lightningnetwork/lightning-rfc: Lightning Network Specifications. URL: https://github.

com/lightningnetwork/lightning-rfc.

[14] lightningnetwork/lnd: Lightning Network Daemon. URL: https://github.com/

lightningnetwork/lnd.

[15] lncli+invoices: experimental key send mode by joostjager · Pull Request #3795 · lightningnet-

work/lnd. URL: https://github.com/lightningnetwork/lnd/pull/3795.

59

[16] Psiphon — Uncensored Internet access for Windows and Mobile. URL: https://www.

psiphon3.com/en/index.html.

[17] Raiden Network. URL: https://raiden.network/.

[18] Russia: Growing Internet Isolation, Control, Censorship — Hu-

man Rights Watch. URL: https://www.hrw.org/news/2020/06/18/

russia-growing-internet-isolation-control-censorship.

[19] Russia will block VPN providers who don’t comply with a blacklist request — MIT

Technology Review. URL: https://www.technologyreview.com/2019/06/10/135019/

russia-will-start-blocking-major-vpn-providers-from-next-month/.

[20] Tor partially blocked in China — Tor Blog. URL: https://blog.torproject.org/

tor-partially-blocked-china.

[21] View of Data Insertion in Bitcoin’s Blockchain. URL: http://www.ledgerjournal.org/ojs/

ledger/article/view/101/93.

[22] Y’alls: Lightning Network powered publishing. URL: https://yalls.org/.

[23] From the legal nature of Bitcoin to discuss the arbitration thinking of Bitcoin dispute, 7 2020.

URL: https://www.bjac.org.cn/news/view?id=3769.

[24] Diogo Barradas, Nuno Santos, Lúıs Rodrigues, and Vı́tor Nunes. Poking a Hole in the Wall:

Efficient Censorship-Resistant Internet Communica-tions by Parasitizing on WebRTC. 2020.

https://doi.org/10.1145/3372297.3417874 doi:10.1145/3372297.3417874.

[25] Ferenc Béres, István A Seres, and András A Benczúr. A Cryptoeconomic Traffic Analysis of

Bitcoin’s Lightning Network. Technical report. URL: https://1ml.com.

[26] Daniel J Bernstein. ChaCha, a variant of Salsa20.

[27] Daniel J Bernstein. Salsa20 security.

[28] Cecylia Bocovich and N C Sa. Recipes for Resistance: A Censorship Circumvention Cookbook.

Technical report.

[29] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’neill. LNCS 5479 - Ad-

vances in Cryptology - EUROCRYPT 2009. 2009. https://doi.org/10.1007/978-3-642-01001-

9 35 doi:10.1007/978-3-642-01001-9{_}35.

[30] Mauro Conti, Kumar E. Sandeep, Chhagan Lal, and Sushmita Ruj. A survey on security and

privacy issues of bitcoin. IEEE Communications Surveys and Tutorials, 20(4):3416–3452, 10

2018. https://doi.org/10.1109/COMST.2018.2842460 doi:10.1109/COMST.2018.2842460.

[31] George Danezis and Ian Goldberg. Sphinx: A compact and provably secure mix for-

mat. In Proceedings - IEEE Symposium on Security and Privacy, pages 269–282, 2009.

https://doi.org/10.1109/SP.2009.15 doi:10.1109/SP.2009.15.

[32] Roger Dingledine. Tor: The Second-Generation Onion Router. Technical report.

60

[33] Carlos M Gutierrez and James M Turner. FIPS PUB 198-1 The Keyed-Hash Message Authen-

tication Code (HMAC) CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYP-

TOGRAPHY. 2008.

[34] J. Han and D. Wren. VPN Products Performance Benchmark, 3 2021. URL: https://www.

passmark.com/reports/VPN_Products_Performance_Benchmarks_2021_Ed1.pdf.

[35] Joost Jager. Lightning Node Performance: Exploring the Path to 1000 TPS, 4 2021. URL:

https://bottlepay.com/blog/bitcoin-lightning-benchmarking-performance/.

[36] Joost Jager. Lightning Node Performance: Testing TPS, 3 2021. URL: https://bottlepay.

com/blog/bitcoin-lightning-node-performance/.

[37] George Kappos, Haaroon Yousaf, Ania Piotrowska, Sanket Kanjalkar, Sergi Delgado-Segura,

Andrew Miller, and Sarah Meiklejohn. An Empirical Analysis of Privacy in the Lightning

Network. 3 2020. URL: https://arxiv.org/abs/2003.12470v3.

[38] Rami Khalil and Arthur Gervais. Revive: Rebalancing Off-Blockchain Payment

Networks. Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, 2017. URL: https://doi.org/10.1145/3133956.3134033,

https://doi.org/10.1145/3133956 doi:10.1145/3133956.

[39] Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M. Swanson, Steven J.

Murdoch, and Ian Goldberg. SoK: Making Sense of Censorship Resistance Sys-

tems. Proceedings on Privacy Enhancing Technologies, 2016(4):37–61, 10 2016. URL:

http://content.sciendo.com/view/journals/popets/2016/4/article-p37.xml,

https://doi.org/10.1515/popets-2016-0028 doi:10.1515/popets-2016-0028.

[40] Satwik Prabhu Kumble, Dick Epema, and Stefanie Roos. How Lightning’s Rout-

ing Diminishes its Anonymity. 7 2021. URL: https://arxiv.org/abs/2107.10070v1,

https://doi.org/10.1145/3465481.3465761 doi:10.1145/3465481.3465761.

[41] Global Legal Research Directorate staff and Law Library of Congress. Regulation of Cryp-

tocurrency Around the World. Technical report, 2018. URL: http://www.law.gov.

[42] Jian-Hong Lin, Kevin Primicerio, Tiziano Squartini, Christian Decker, and Claudio J Tessone.

Lightning network: a second path towards centralisation of the Bitcoin economy * Recent

citations Kimberly Lange et al-A Formal Specification Smart-Contract Language for Legally

Binding Decentralized Autonomous Organizations Vimal Dwivedi et al Lightning network: a

second path towards centralisation of the Bitcoin economy *. New J. Phys, 22:83022, 2020.

https://doi.org/10.1088/1367-2630/aba062 doi:10.1088/1367-2630/aba062.

[43] Joshua Lind, Ittay Eyal, Peter Pietzuch, and Emin Gün Sirer. Teechan: Payment Channels

Using Trusted Execution Environments.

[44] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, T U Wien, and Sri-

vatsan Ravi. Concurrency and Privacy with Payment-Channel Networks *. Technical report.

61

[45] Stefano Martinazzi and Andrea Flori. The evolving topology of the Lightning Network: Cen-

tralization, efficiency, robustness, synchronization, and anonymity. PLoS ONE, 15(1), 1 2020.

https://doi.org/10.1371/journal.pone.0225966 doi:10.1371/journal.pone.0225966.

[46] Mohsen Minaei, Pedro Moreno-Sanchez, and Aniket Kate. MoneyMorph: Censorship Re-

sistant Rendezvous using Permissionless Cryptocurrencies. Proceedings on Privacy En-

hancing Technologies, 2020(3):404–424, 8 2020. URL: https://content.sciendo.com/

view/journals/popets/2020/3/article-p404.xml, https://doi.org/10.2478/popets-2020-

0058 doi:10.2478/popets-2020-0058.

[47] Ayelet Mizrahi and Aviv Zohar. Congestion Attacks in Payment Channel Networks. 2 2020.

URL: https://arxiv.org/abs/2002.06564v4.

[48] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Gold-

berg. SkypeMorph: Protocol obfuscation for Tor bridges. Proceedings of the

ACM Conference on Computer and Communications Security, pages 97–108, 2012.

https://doi.org/10.1145/2382196.2382210 doi:10.1145/2382196.2382210.

[49] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Technical report. URL:

www.bitcoin.org.

[50] Daiyuu Nobori and Yasushi Shinjo. VPN Gate: A Volunteer-Organized Public VPN Relay

System with Blocking Resistance for Bypassing Government Censorship Firewalls. Proceedings

of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI

’14), 2014.

[51] Paul Pearce, Uc Berkeley, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver,

Vern Paxson, Paul Pearce Ben Jones, and Frank Li Roya Ensafi. Global Measurement

of DNS Manipulation. URL: https://www.usenix.org/conference/usenixsecurity17/

technical-sessions/presentation/pearce.

[52] Fabien A. P. Petitcolas. Kerckhoffs’ Principle. Encyclopedia of Cryptography and Se-

curity, pages 675–675, 2011. URL: https://link.springer.com/referenceworkentry/

10.1007/978-1-4419-5906-5_487, https://doi.org/10.1007/978-1-4419-5906-5 487 doi:10.

1007/978-1-4419-5906-5{_}487.

[53] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable Off-Chain Instant

Payments. Technical report, 2016.

[54] Ruben Recabarren and Bogdan Carbunar. Tithonus: A bitcoin based cen-

sorship resilient system, 9 2018. URL: https://content.sciendo.com/view/

journals/popets/2019/1/article-p68.xml, https://doi.org/10.2478/popets-2019-0005

doi:10.2478/popets-2019-0005.

[55] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted Exe-

cution Environment: What It is, and What It is Not. 2015. URL: https://hal.

archives-ouvertes.fr/hal-01246364, https://doi.org/10.1109/Trustcom.2015.357̈ı doi:

10.1109/Trustcom.2015.357{\"{i}}.

62

[56] Adrian Shabaz and Funk Allie. The Pandemic’s Digital Shadow — Freedom House. URL:

https://freedomhouse.org/report/freedom-net/2020/pandemics-digital-shadow.

[57] Samuel Shen and Andrew Galbraith. China’s furtive bitcoin trade heats up

again, worrying regulators, 3 2021. URL: https://www.reuters.com/article/

us-crypto-currency-china-idUSKCN2AT201.

[58] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo Maffei. A Quantitative Analysis of

Security, Anonymity and Scalability for the Lightning Network. Technical report. URL:

https://ln.bigsun.xyz.

[59] Benjamin Vandersloot, Sergey Frolov, Jack Wampler, Chuen Tan, Irv Simpson, Michalis

Kallitsis, J Alex Halderman, Nikita Borisov, and Eric Wustrow. Proceedings on Privacy En-

hancing Technologies ; 2020 (4):321-335 Running Refraction Networking for Real. Technical

report.

[60] Philipp Winter and Stefan Lindskog. How the Great Firewall of China is Blocking Tor.

Technical report. URL: http://www.cs.kau.se/philwint/static/gfc/.

63

12 APPENDIX

12.1 Throttle Helper Object

import thread ing

import queue

class Throt t l e :

def i n i t (s e l f , i n t e r v a l , funct ion , t ransac t ion queue ,

send dummy=False , dummy=None) :

s e l f . i n t e r v a l = i n t e r v a l

s e l f . f unc t i on = func t i on

s e l f . queue = transac t i on queue

s e l f . send dummy = send dummy

s e l f .dummy = dummy

s e l f . e = thread ing . Event ()

s e l f . t = thread ing . Thread (t a r g e t=s e l f . t h r o t t l e)

s e l f . t . s t a r t ()

def t h r o t t l e (s e l f) :

while not s e l f . e . wait (s e l f . i n t e r v a l) :

i f s e l f . send dummy :

i f s e l f . queue . empty () :

arg = s e l f .dummy

else :

arg = s e l f . queue . get ()

else :

arg = s e l f . queue . get ()

thread ing . Thread (t a r g e t=s e l f . funct ion , args=arg) . s t a r t ()

64

12.2 Construction of a Data-Embedded Transaction

Convert to base64 f o r s a f e t ransmiss ion

enc data = base64 . b64encode (data)

Packet : [t u b e i d x] : [p a c k e t i d x] : [p a c k e t c o n t e n t]

packet = f ’ { tube idx } :{ packet idx } :{ s t r (enc data) } ’ . encode ()

preimage , phash = next (s e l f . c rypt)

Keysend record f o r invo ice −f r e e t r a n s a c t i o n , as w e l l as the data

c a r r y i n g record

custom records = {
5482373484: preimage ,

9780141036144: packet

}

The r e q u e s t wi th the embedded custom records

r eque s t = route r rpc . SendPaymentRequest (

payment hash=phash ,

amt=1,

f i n a l c l t v d e l t a =40,

des t=bytes . fromhex (s e l f . t a rge t pk) ,

t imeout seconds =2,

de s t cu s tom reco rds=custom records ,

f e e l i m i t s a t =30,

n o i n f l i g h t u p d a t e s=True ,

d e s t f e a t u r e s =[9] ,

)

for update in s e l f . r oute r s tub . SendPaymentV2 (request , metadata =[(’

macaroon ’ , s e l f . macaroon)]) :

print (update)

12.3 Key Generation as implemented by LND

// generateKey g e n e r a t e s a new key f o r usage in Sphinx packe t

// c o n s t r u c t i o n / p r o c e s s i n g based o f f o f the denoted keyType . Within Sphinx

// v a r i o u s keys are used w i t h i n the same onion packe t f o r padding generat ion ,

// MAC generat ion , and encryp t ion / d e c r y p t i o n .

65

func generateKey (keyType string , sharedKey ∗Hash256) [keyLen] byte {
mac := hmac .New(sha256 .New, [] byte (keyType))

mac . Write (sharedKey [:])

h := mac .Sum(ni l)

var key [keyLen] byte

copy (key [:] , h [: keyLen])

return key

}

12.4 Throughput Evaluation Script

function bench () {
r e s u l t s =($ (c u r l −so /dev/ n u l l −s $1 −−proxy 1 2 7 . 0 . 0 . 1 : 8 7 4 2 −w ’%{

s i ze download } %{t i m e t o t a l } %{speed download} %{
t i m e s t a r t t r a n s f e r } ’ −−i n s e c u r e))

echo ”${ r e s u l t s [0] } ${ r e s u l t s [1] } ${ r e s u l t s [2] } ${ r e s u l t s [3] } ”

}

function bench n () {
s sum=0

t sum=0

for ((n=0;n<$1 ; n++))

do

r e s=$ (bench $2)

read −a r e s a r r <<< $ r e s

time=${ r e s a r r [1] }
speed=${ r e s a r r [2] }

s sum=$ ((s sum + speed))

t sum=$ ((t sum + time))

echo $speed $time

s l e e p 5

done

s avg=$ (bc <<< ” s c a l e =0;$s sum/$1”)

s r e a d a b l e a v g=$ (bytesToHumanReadable $s avg)

t avg=$ (bc <<< ” s c a l e =0;$t sum/$1”)

66

t r e a d a b l e a v g=$ (bc <<< ” s c a l e =2; $ t avg /1000000 ”)

echo $s avg bytes per second , $ s r eadab l e avg per second . Average

durat ion was $ t r eadab l e avg .

}
bench n $1 ” https : // en . w ik iped ia . org / wik i / Censorship ”

s l e e p 30

bench n $1 ” https : //www. bbc . com/”

s l e e p 30

bench n $1 ” https : // github . com”

12.5 Evaluation Testbed

Figure 17: Docker testbed setup to have consistent load during different tests.

67

